• Title/Summary/Keyword: anode material

Search Result 729, Processing Time 0.029 seconds

Failure Analysis of Corroded Coating Materials by Acoustic Emission (음향방출법에 의한 용사코팅 피막부식재의 파손 해석)

  • KIM GUI-SHIK;HYUN CHANG-HAE;HONG YONG-UI;SHON CHANG-HWAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.43-49
    • /
    • 2005
  • This paper is to investigate the effect of corrosion by acoustic emission method in tensile loading and the adhesiveness between substrate and coating layer. The powders used are Zn and Amdry625, respectively. They are coated on brass alloy substrate. AE signals of Zn and Amdry625 coating layer increase drastically in strain $2\%$. However, those of Zn specimen have more than those of Amdry625 specimen. When the specimens executed the corrosion test under $3.5\%$ NaCl solution for 500, 1000 hours, the salt solution penetrated into the surface of the substrate through the pores of the coating layer. As a result, corrosion production formed on the surface of the substrate. The adhesiveness between coating layers is weakened by the polarization and corrosion itself. The AE event, count, and energy of corroded coating specimens decrease, compared to specimens without corrosion. The results are summarized as follows : 1. In the tensile tests, the time that it took to start and develop the cracks and exfoliations between the surface of the substrates and the plasma spray coatings were different according to the type of plasma sprayed material, which are Zn and Amdry625. These phenomena were obvious at the strain rate 1 to $5\%$, and few available data were found after that stage. 2. The specimens with Zn coating showed the characteristics of crack, according to the changes of the tensile strength applied on the substrates while those with Amdry625 showed exfoliation as a result of low adaptation to the tensile strength. 3. The anti-corrosion specimens showed that the adhesive properties between the substrate and the plasma spray coating were strong in the order of Zn, Amdry. It showed that Corroded specimens cracked or exfoliated easily, even with the small energy, because those had a comparatively weakened adhesive property, due to corrosion. 4. Zn specimen showed no corrosion phenomena on the surface of the substrates, because they had the function of sacrifice anode however, Amdry625 specimen showed the corrosion, because it did not have that function.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Synthesis of SnSb alloys using high energy ball-miiling and its lithium electrochemical behavior (고에너지 볼밀을 이용한 SnSb 합금 분말 제조와 리튬 전기화학적 특성)

  • Kim, Dae Kyung;Lee, Hyukjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.191-198
    • /
    • 2018
  • SnSb alloy powders with excess Sn or Sb are fabricated by the high energy ball-milling of pure Sn and Sb powders with different Sn/Sb molar ratios, and then their material properties and lithium electrochemical performances are investigated. It is revealed by X-ray diffraction that SnSb alloys are successfully synthesized, and the powder size is decreased via ball-milling. Charge-discharge test using a coin-cell shows that the best result, in terms of the cyclability and the capacity after 50 cycles, comes from the electrode composed of Sn : Sb = 4 : 6, i.e. the capacity of $580mAh\;g^{-1}$ after 50 cycles. When the electrode is composed of Sn : Sb = 3 : 7, however, the capacity is noticeably decreased by the restrained Sn reaction with Li-ion. The pure SnSb alloy powders (Sn : Sb = 5 : 5) results in the second best performance. In the case of Sn-rich SnSb alloys, the initial capacity is relatively high, but the capacity is quickly fading after 20 cycles.

Design and Construction of Multi-wire Proportional Counter and Preamplifier for Measurement of Charged Particle (하전입자의 측정을 위한 다중선 비례계수기와 전치증폭기의 설계 제작)

  • Kim, Jong-Soo;Yoon, Suk-Chull
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.139-143
    • /
    • 1996
  • A multi-wire proportional counter with large sensitive area was designed and constructed considering diameter of anode wire. its material and space. A preamplifier connecting detector to main amplifier or counter was also designed and constructed for measurement output pulse from multi-wire proportional counter. The preamplifier was composed of charge-sensitive differential circuit. clipping circuit and amplification circuit. To test the performance of this equipment, terminal output pulse from the preamplifier was measured and compared with noise For these tests $^{239}Pu(360 Bq)\;and\; ^{90}Sr/^{90}Y(250 Bq)$ were used as radiation sources. The noise ingredient contributing to the maximum amplitude(180mV from $^{239}Pu$ and 200 mV from $^{90}Sr/^{90}Y$) was found to be very small(8 mV) Piled up pulse occurring at the output pulse of charge-sensitive differential circuit was measured as an independent pulse since this affected the amplification in the clipping circuit and amplification circuit. This information can be used to improve the loss of measurement due to piled up pulse.

  • PDF

The relation of structural transition, thermal and electrical stability deintercalation of Li- CICs(II) : For Li-EaGDICs and Li-EGDICs (Li-CICs의 Deintercalation에 따른 구조변이와 열적, 전기적 안정성과의 관계(II) : Li-EaGDICs와 Li-EGDICs에 관하여)

  • Oh, Won-Chun;Park, Chung-Oh;Back, Dae-Jin;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1996
  • We have discussed on the deintercalation process of Li-EaGICs and Li-EGICs synthesized under pressure and temperature by spontaneous oxidation reaction of those compounds based on the results of X-ray diffraction, thermal analysis and electrical specific resistivity analysis. According to the results of the X-ray analysis for the intercalation process, we have found that the stage 1 for Li-EaGICs and Li-EGICs were not completly formed, but their lower stages were formed mainly. And from this results of the deintercalation process, we have found that the deintercalation process did not occur any more after 4 weeks, and the Li-EGDICs have more residual lithium metals than LiEaGDICs between the graphite interlayers. According to the thermal decomposition analysis, Li-two compounds had included very hard exothermic reaction. And we have found that these compounds did not occrurred deintercalation reaction above $400^{\circ}C$. According to the results of the electrical specific resistivity measurements, Li-EGDICs have relatively lower electrical specific resistivity than Li-EaGDICs, and Li-EaGDICs showed a formation of the ideal curve. From these results, we can suggest that Li-EaGDICs have a better properties as an anode material secondary than Li-EGICs.

  • PDF

Electricity Production by Metallic and Carbon Anodes Immersed in an Estuarine Sediment (퇴적토에 담지된 금속 및 탄소전극에 의한 전기 생산 특성)

  • Song, Hyung-Jin;Rhee, In-Hyoung;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3731-3739
    • /
    • 2009
  • One-chambered sediment cells with a variety of anodic electrodes were tested for generation of electricity. Material used for anodes was iron, brass, zinc/iron, copper and graphite felt which was used for a common cathode. The estuarine sediment served as supplier of oxidants or electron-producing microbial habitat which evoked electrons via fast metal corrosion reactions or a complicated microbial electron transfer mechanism, respectively. Maximum power density and current density were found to be $6.90\;W/m^2$ (iron/zinc) and $7.76\;A/m^2$ (iron), respectively. Interestingly, copper wrapped with carbon cloth produced better electric performance than copper only, by 60%, possibly because the cloth not only prevented rapid corrosion on the copper surface by some degrees, but also helped growing some electron-emitting microbes on its surface. At anodes oxidation reduction potential(ORP) was kept to be stationary over time except at the very initial period. The pH reduction in the copper and copper/carbon electrodes could be a sign of organic acid production due to a chemical change in the sediment. The simple estimation of interfacial, electrical resistances of electrodes and electrolyte in the sediment cell that a key to the electricity generation should be in how to control corrosion rate or microbial electron transfer activity.

Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review

  • Cao, Shiyu;Song, Shangbin;Xiang, Xing;Hu, Qing;Zhang, Chi;Xia, Ziwen;Xu, Yinghui;Zha, Wenping;Li, Junyang;Gonzale, Paulina Mercedes;Han, Young-Hwan;Chen, Fei
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.111-129
    • /
    • 2019
  • Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li7La3Zr2O12 (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

Electrochemical Characteristics of Li3V2(PO4)3 Negative Electrode as a Function of Crystallinity (결정화도에 따른 Li3V2(PO4)3 음극의 전기화학적 특성)

  • Ku, Jun-Whan;Park, Kyung-Jin;Ryu, Ji-Heon;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • $Li_3V_2(PO_4)_3$/carbon composite materials are synthesized from a sucrose-containing precursor. Amorphous $Li_3V_2(PO_4)_3/C$ (a-LVP/C) and crystalline $Li_3V_2(PO_4)_3/C$ (c-LVP/C) are obtained by calcining at $600^{\circ}C$ and $800^{\circ}C$, respectrively, and electrochemical performance as the negative electrode for lithium secondary batteries is compared for two samples. The a-LVP electrode shows much larger reversible capacity than c-LVP, which is ascribed to the spatial $Li^+$ channels and flexible structure of amorphous material. In addition, this electrode shows an excellent rate capability, which can be accounted for by the facilitated $Li^+$ diffusion through the defect sites. The sloping voltage profile is another advantageous feature for easy SOC (state of charge) estimation.

The Effect of Glass Fabric Separator Elongation on Electric Property in Structural Battery (유리섬유 분리막 인장으로 인한 구조전지의 전기적 물성 변화)

  • Shin, Jae-Sung;Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2017
  • Structural battery has been researched extensively to combine the functions of the battery and structure without gravimetric or volumetric increments compared to their individual components. The main idea is to employ carbon fabric as the reinforcement and electrode, glass fabric as the separator, and solid-state electrolyte which can transfer load. However, state-of-the-art solid-state electrolytes do not have sufficient load carrying functionality and exhibiting appropriate ion conductivity simultaneously. Therefore, in this research, a system which has both battery and load carrying capabilities using glass fabric separator and liquid electrolyte was devised and tested to investigate the potential and feasibility of this structural battery system and observe electric properties. It was observed that elongating separator decreased electrical behavior stability. A possible cause of this phenomenon was the elongated glass fabric separator inadequately preventing the penetration of small particles of the cathode material into the anode. This problem was verified additionally by using a commercial separator. The characteristic of the glass fabric and the interface between the electrode and glass fabric needed to be further studied for the realization of such a load carrying structural battery system.

The Cycling Performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery (리튬이온전지용 주석산화물이 도포된 흑연전극의 싸이클 성능)

  • Kang, Tae-Hyuk;Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2002
  • Tin oxide was coated on graphite particle by sol-gel method and an electrode with this material having microcrystalline structure for lithium ion battery was obtained by heat treatment in the range $400-600^{\circ}C$. The content of tin oxide was controlled within the range of $2.25wt\%\~11.1wt\%$. The discharge capacity increased with the content of tin oxide and also initial irreversible capacity increased. The discharge capacity of tin oxide electrode showed more than 350 mAh/g at the initial cycle and 300 mAh/g after the 30th cycle in propylene carbonate(PC) based electrolyte whereas graphite electrode without surface modification showed 140 mAh/g. When the charge and discharge rate was changed from C/5 to C/2, The discharge capacity of tin oxide and graphite electrode showed $92\%\;and\;77\%$ of initial capacity, respectively. It has been considered that such an enhancement of electrode characteristics was caused because lithium $oxide(Li_2O)$ passive film formed from the reaction between tin oxide and lithium ion prevented the exfoliation of graphite electrode and also reduced tin enhanced the electrical conduction between graphite particles to improve the current distribution of electrode.