Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2018.28.5.191

Synthesis of SnSb alloys using high energy ball-miiling and its lithium electrochemical behavior  

Kim, Dae Kyung (School of Materials Science and Engineering, Andong National University)
Lee, Hyukjae (School of Materials Science and Engineering, Andong National University)
Abstract
SnSb alloy powders with excess Sn or Sb are fabricated by the high energy ball-milling of pure Sn and Sb powders with different Sn/Sb molar ratios, and then their material properties and lithium electrochemical performances are investigated. It is revealed by X-ray diffraction that SnSb alloys are successfully synthesized, and the powder size is decreased via ball-milling. Charge-discharge test using a coin-cell shows that the best result, in terms of the cyclability and the capacity after 50 cycles, comes from the electrode composed of Sn : Sb = 4 : 6, i.e. the capacity of $580mAh\;g^{-1}$ after 50 cycles. When the electrode is composed of Sn : Sb = 3 : 7, however, the capacity is noticeably decreased by the restrained Sn reaction with Li-ion. The pure SnSb alloy powders (Sn : Sb = 5 : 5) results in the second best performance. In the case of Sn-rich SnSb alloys, the initial capacity is relatively high, but the capacity is quickly fading after 20 cycles.
Keywords
Li-ion batteries; Anode; Tin; Antimony; Alloys;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. He, M. Walter, K.V. Kravchyk, R. Erni, R. Widmer and M.V. Kovalenko, "Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb", Nanoscale 7 (2015) 455.   DOI
2 M. Walter, S. Doswald and M.V. Kovalenko, "Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries", J. Mater. Chem. 4 (2016) 7053.   DOI
3 Y.F. Zhukovskii, P. Balaya, E.A. Kotomin and J. Maier, "Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations", Phys. Rev. Lett. 96 (2006) 058302.   DOI
4 Y.-Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.-S. Du, K.W. Chapman, P.J. Chupas, X.-Q. Yang and C.P. Grey, "Origin of additional capacities in metal oxide lithium-ion battery electrodes", Nat. Mater. 12 (2013) 1130.   DOI
5 F.J. Fernandez-Madrigal, P. Lavela, C.P. Vicente, J.L. Tirado, J.C. Jumas and J. Olivier-Fourcade, "X-ray diffraction, $^7Li$ MAS NMR spectroscopy, and $^{119}Sn$ Mossbauer spectroscopy study of SnSb-based electrode materials", Chem. Mater. 14 (2002) 2962.   DOI
6 L. Aldon, A. Garcia, J. Olivier-Fourcade, J.-C. Jumas, F.J. Fernandez-Madrigal, P. Lavela, C.P. Vicente and J.L. Tirado, "Lithium insertion mechanism in Sb-based electrode materials from $^{121}Sb$ Mossbauer spectrometry", J. Power Sources 119-121 (2003) 585.   DOI
7 X.L. Wang, M. Feygenson, H.Y. Chen, C.H. Lin, W. Ku, J.M. Bai, M.C. Aronson, T.A. Tyson and W.Q. Han, "Nanospheres of a new intermetallic FeSn5 phase: Synthesis, magnetic properties and anode performance in Li-ion batteries", J. Am. Chem. Soc. 133 (2011) 11213.   DOI
8 Y. Gu, F.D. Wu and Y. Wang, "Confined volume change in Sn-Co-C ternary Tube-in-Tube composites for high-capacity and long-life lithium storage", Adv. Funct. Mater. 23 (2013) 893.   DOI
9 I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, "A major constituent of brown algae for use in high-capacity Li-ion batteries", Science 334 (2011) 75.   DOI
10 A.M. Chockla, K.C. Klavetter, C.B. Mullins and B.A. Korgel, "Tin-seeded silicon nanowires for high capacity Li-Ion batteries", Chem. Mater. 24 (2012) 3738.   DOI
11 S.C. Chao, Y.F. Song, C.C. Wang, H.S. Sheu, H.C. Wu and N.L. Wu, "Study on microstructural deformation of working Sn and SnSb anode particles for Li-ion batteries by in situ transmission X-ray microscopy", J. Phys. Chem. C 115 (2011) 22040.   DOI
12 H.L. Zhao, C.L. Yin, H. Guo, J.C. He, W.H. Qiu and Y. Li, "Studies of the electrochemical performance of SnSb alloy prepared by solid-state reduction", J. Power Sources 174 (2007) 916.   DOI
13 S.F. Fan, T. Sun, X.H. Rui, Q.Y. Yan and H.H. Hng, "Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries", J. Power Sources 201 (2012) 288.   DOI
14 H. Li, G.Y. Zhu, X.J. Huang and L.Q. Chen, "Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature", J. Mater. Chem. 10 (2000) 693.   DOI
15 J.U. Seo and C.M. Park, "Nanostructured SnSb/MOx (M = Al or Mg)/C composites: hybrid mechanochemical synthesis and excellent Li storage performances", J. Mater. Chem. A 48 (2013) 15316.
16 S. Das, T.N. Guru Row and A.J. Bhattacharyya, "Probing the critical role of Sn content in SnSb@C nanofiber anode on Li storage mechanism and battery performance", ACS Omega 2 (2017) 9250.   DOI
17 Y. Wang and J.Y. Lee, "One-step, confined growth of bimetallic Tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage", Angew. Chem., Int. Ed. 45 (2006) 7039.   DOI
18 R. Van Noorden, "A better battery", Nature 507 (2014) 26.   DOI
19 C.M. Park, J.H. Kim, H. Kim and H.J. Sohn, "Li-alloy based anode materials for Li secondary batteries", Chem. Soc. Rev. 39 (2010) 3115.   DOI
20 D. Larcher and J.M. Tarascon, "Towards greener and more sustainable batteries for electrical energy storage", Nat. Chem. 7 (2015) 19.   DOI