• Title/Summary/Keyword: annihilator ideal

Search Result 28, Processing Time 0.022 seconds

EXACTNESS OF IDEAL TRANSFORMS AND ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES

  • BAHMANPOUR, KAMAL
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1253-1270
    • /
    • 2015
  • Let (R, m) be a commutative Noetherian local domain, M a non-zero finitely generated R-module of dimension n > 0 and I be an ideal of R. In this paper it is shown that if $x_1,{\ldots },x_t$ ($1{\leq}t{\leq}n$) be a sub-set of a system of parameters for M, then the R-module $H^t_{(x_1,{\ldots },x_t)}$(R) is faithful, i.e., Ann $H^t_{(x_1,{\ldots },x_t)}$(R) = 0. Also, it is shown that, if $H^i_I$ (R) = 0 for all i > dim R - dim R/I, then the R-module $H^{dimR-dimR/I}_I(R)$ is faithful. These results provide some partially affirmative answers to the Lynch's conjecture in [10]. Moreover, for an ideal I of an arbitrary Noetherian ring R, we calculate the annihilator of the top local cohomology module $H^1_I(M)$, when $H^i_I(M)=0$ for all integers i > 1. Also, for such ideals we show that the finitely generated R-algebra $D_I(R)$ is a flat R-algebra.

The metric approximation property and intersection properties of balls

  • Cho, Chong-Man
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.467-475
    • /
    • 1994
  • In 1983 Harmand and Lima [5] proved that if X is a Banach space for which K(X), the space of compact linear operators on X, is an M-ideal in L(X), the space of bounded linear operators on X, then it has the metric compact approximation property. A strong converse of the above result holds if X is a closed subspace of either $\elll_p(1 < p < \infty) or c_0 [2,15]$. In 1979 J. Johnson [7] actually proved that if X is a Banach space with the metric compact approximation property, then the annihilator K(X)^\bot$ of K(X) in $L(X)^*$ is the kernel of a norm-one projection in $L(X)^*$, which is the case if K(X) is an M-ideal in L(X).

  • PDF

WHEN IS AN ENDOMORPHISM RING P-COHERENT?

  • Mao, Lixin
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.99-111
    • /
    • 2009
  • A ring is called left P-coherent if every principal left ideal is finitely presented. Let M be a right R-module with the endomorphism ring S. We mainly study the P-coherence of S. It is shown that S is a left P-coherent ring if and only if the left annihilator $ann_S$(X) is a finitely generated left ideal of S for any M-cyclic submodule X of M if and only if every cyclically M-presented right R-module has an M-torsionfree preenvelope. As applications, we investigate when the endomorphism ring S is left PP or von Neumann regular.

ON ANNIHILATIONS OF IDEALS IN SKEW MONOID RINGS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.381-401
    • /
    • 2016
  • According to Jacobson [31], a right ideal is bounded if it contains a non-zero ideal, and Faith [15] called a ring strongly right bounded if every non-zero right ideal is bounded. From [30], a ring is strongly right AB if every non-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property (A) and the conditions asked by Nielsen [42]. It is shown that for a u.p.-monoid M and ${\sigma}:M{\rightarrow}End(R)$ a compatible monoid homomorphism, if R is reversible, then the skew monoid ring R * M is strongly right AB. If R is a strongly right AB ring, M is a u.p.-monoid and ${\sigma}:M{\rightarrow}End(R)$ is a weakly rigid monoid homomorphism, then the skew monoid ring R * M has right Property (A).

ORE EXTENSIONS OVER σ-RIGID RINGS

  • Han, Juncheol;Lee, Yang;Sim, Hyo-Seob
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Let R be a ring with an endomorphism σ and a σ-derivation δ. R is called (σ, δ)-Baer (resp. (σ, δ)-quasi-Baer, (σ, δ)-p.q.-Baer, (σ, δ)-p.p.) if the right annihilator of every right (σ, δ)-set (resp., (σ, δ)-ideal, principal (σ, δ)-ideal, (σ, δ)-element) of R is generated by an idempotent of R. In this paper, for a given Ore extension A = R[x; σ, δ] of R, the following properties are investigated: If R is a σ-rigid ring in which σ and δ commute, then (1) R is (σ, δ)-Baer if and only if R is (σ, δ)-quasi-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-quasi-Baer; (2) R is (σ, δ)-p.p. if and only if R is (σ, δ)-p.q.-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-p.p. if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-p.q.-Baer.

SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

  • HAN JUNCHEOL
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.

THE COHN-JORDAN EXTENSION AND SKEW MONOID RINGS OVER A QUASI-BAER RING

  • HASHEMI EBRAHIM
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • A ring R is called (left principally) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated by an idempotent. Let R be a ring, G be an ordered monoid acting on R by $\beta$ and R be G-compatible. It is shown that R is (left principally) quasi-Baer if and only if skew monoid ring $R_{\beta}[G]$ is (left principally) quasi-Baer. If G is an abelian monoid, then R is (left principally) quasi-Baer if and only if the Cohn-Jordan extension $A(R,\;\beta)$ is (left principally) quasi-Baer if and only if left Ore quotient ring $G^{-1}R_{\beta}[G]$ is (left principally) quasi-Baer.

DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS

  • Dhara, Basudeb;Kar, Sukhendu;Mondal, Sachhidananda
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1651-1657
    • /
    • 2013
  • Let R be a prime ring, I a nonzero ideal of R, $d$ a derivation of R, $m({\geq}1)$, $n({\geq}1)$ two fixed integers and $a{\in}R$. (i) If $a((d(x)y+xd(y)+d(y)x+yd(x))^n-(xy+yx))^m=0$ for all $x,y{\in}I$, then either $a=0$ or R is commutative; (ii) If $char(R){\neq}2$ and $a((d(x)y+xd(y)+d(y)x+yd(x))^n-(xy+yx)){\in}Z(R)$ for all $x,y{\in}I$, then either $a=0$ or R is commutative.