• Title/Summary/Keyword: annexin A1

Search Result 257, Processing Time 0.032 seconds

Antioxidant and Apoptotic Effects of an Aqueous Extract of Urtica dioica on the MCF-7 Human Breast Cancer Cell Line

  • Fattahi, Sadegh;Ardekani, Ali Motevalizadeh;Zabihi, Ebrahim;Abedian, Zeinab;Mostafazadeh, Amrollah;Pourbagher, Roghayeh;Akhavan-Niaki, Haleh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5317-5323
    • /
    • 2013
  • Breast cancer is the most prevalent cancer and one of the leading causes of death among women in the world. Plants and herbs may play an important role in complementary or alternative treatment. The aim of this study was to evaluate the antioxidant and anti-proliferative potential of Urtica dioica. The anti oxidant activity of an aqueous extract of Urtica dioica leaf was measured by MTT assay and the FRAP method while its anti-proliferative activity on the human breast cancer cell line (MCF-7) and fibroblasts isolated from foreskin tissue was evaluated using MTT assay. Mechanisms leading to apoptosis were also investigated at the molecular level by measuring the amount of anti and pro-apoptotic proteins and at the cellular level by studying DNA fragmentation and annexin V staining by flow cytometry. The aqueous extract of Urtica dioica showed antioxidant effects with a correlation coefficient of $r^2$=0.997. Dose-dependent and anti-proliferative effects of the extract were observed only on MCF-7 cells after 72 hrs with an $IC_{50}$ value of 2 mg/ml. This anti proliferative activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation, the appearance of apoptotic cells in flow cytometry analysis and an increase of the amount of calpain 1, calpastatin, caspase 3, caspase 9, Bax and Bcl-2, all proteins involved in the apoptotic pathway. This is the first time such in vitro antiproliferative effect of aqueous extract of Urtica dioica leaf has been described for a breast cancer cell line. Our findings warrant further research on Urtica dioica as a potential chemotherapeutic agent for breast cancer.

Induction of apoptosis by water extract Glycyrrhizae radix in human bladder T24 cancer cells (인체 방광암 T24 세포에서 Glycyrrhizae radix 열수추출물에 의한 apoptosis 유도)

  • Eom, Jung Hye;Hwang, Buyng Su;Jeong, Yong Tae;Kim, Min-Jin;Shin, Su Young;Kim, Chul Hwan;Lee, Seung Young;Choi, Kyung Min;Cho, Pyo Yun;Jeong, Jin-Woo;Oh, Young Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.111-111
    • /
    • 2019
  • Glycyrrhizae radix is one of the most frequently prescribed ingredients in Oriental medicine, and G. radix extract has been shown to exert anti-cancer effects. However, the cellular and molecular mechanisms of apoptosis by G. radix are poorly defined. In the present study, it was examined the biochemical mechanisms of apoptosis by water extract of G. radix (WEGR) in human bladder T24 cancer cells. It was found that WEGR could inhibit the cell growth of T24 cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, DNA fragmentation and increased populations of annexin-V positive cells. The induction of apoptotic cell death by WEGR was connected with an up-regulation of pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL proteins, and inhibition of apoptosis family proteins (XIAP, cIAP-1 and cIAP-2). In addition, apoptosis-inducing concentrations of WEGR induced the activation of caspase-9, an initiator caspase of the mitochondrial-mediated intrinsic pathway, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. WEGR also induced apoptosis via a death receptor-mediated extrinsic pathway by caspase-8 activation, resulting in the down-regulation of total Bid and suggesting the existence of cross-talk between the extrinsic and intrinsic pathways. Taken together, the present results suggest that WEGR may be a potential chemotherapeutic agent for the control of human bladder cancer cells.

  • PDF

Antioxidant and growth inhibitory activities of Mesembryanthemum crystallinum L. in HCT116 human colon cancer cells (아이스플랜트의 항산화 및 HCT116 인체 유래 대장암세포 성장억제 활성)

  • Seo, Jin A;Ju, Jihyeung
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.157-167
    • /
    • 2019
  • Purpose: This study examined the antioxidant and cancer cell growth inhibitory activities of an ethanol extract and different solvent fractions of Mesembryanthemum crystallinum L. (ice plant). Methods: The ice plant was freeze-dried, extracted with 99.9% ethanol, and then fractionated with hexane, ethyl acetate, butanol, and water. The total polyphenol content (TPC), total carotenoid content (TCC), 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity (RSA), and ferric reducing antioxidant power (FRAP) were measured. Assays using 2',7'-dichlorofluorescin-diacetate and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed to measure the intracellular reactive oxygen species (ROS) and cell growth, respectively. Annexin V/propidium iodide staining and cell cycle analysis were performed for the detection of apoptosis and cell cycle arrest. Results: TPC, TCC, RSA, and FRAP of the ethanol extract (EE) were 3.7 mg gallic acid equivalent/g, $13.2{\mu}g/g$, 21.0% (at a concentration of 5 mg/mL), and 21.0% (at a concentration of 5 mg/mL), respectively. Among the different solvent fractions, the butanol fraction (BF) showed the highest TPC (5.4 mg gallic acid equivalent/g), TCC ($86.6{\mu}g/g$), RSA (34.9% at 5 mg/mL), and FRAP (80.8% at 5 mg/mL). Treatment of HCT116 human colon cancer cells with EE and BF at concentrations of 250 and $500{\mu}g/mL$ reduced the levels of intracellular ROS. Concomitantly, EE and BF resulted in the dose-dependent inhibition of cell growth (at the concentrations of 125, 250, and $500{\mu}g/mL$ for 24 ~ 48 h) and the induction of apoptosis (at the concentrations of 250 and $500{\mu}g/mL$ for 48 h) in HCT116 cells. An increased G2/M cell population was also found in the BF-treated cells. Conclusion: These results suggest that ice plant possesses antioxidant and growth inhibitory activities in colon cancer cells.

Studies on Radiation Protection Effect of the Beer (맥주의 방사선방어효과에 관한 연구)

  • Sohn, Jong-Gi;Ha, Tae-Young;Hwang, Chul-Hyan;Lee, Young-Hwa
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.83-90
    • /
    • 2007
  • Purpose: In this study, it was investigated whether commercially produced beer is able to prevent a lymphocyte from radiation induced apoptosis. Materials and Methods: Whole blood samples were acquired from 5 healthy volunteers (male, 26$\sim$38 years old) and the lymphocyte were isolated by density gradient centrifugation. Radiation induced apoptosis of the lymphocyte were investigated by 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy to 5.0 Gy irradiation. In some experiments, the donor drunk beer and then blood samples were collected. In other experiments, melatonin or glycine betain was added to lymphocyte culture medium. Treated or untreated lymphocytes were cultured for 60 hours and radiation induced apoptosis of the lymphocyte was analyzed by annexin-V staining through flow cytometery. Results: Relative radiation induced apoptosis ratio of the untreated lymphocytes is 1.22$\pm$1.1, 1.22$\pm$1.1, 1.38$\pm$1.0, 1.47$\pm$1.1, 1.50$\pm$1.2 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively. Relative radiation induced apoptosis ratio of lymphocytes is isolated from beer drunken donors is 0.97$\pm$1.0, 0.99$\pm$1.0, 1.11$\pm$0.9, 1.29$\pm$1.1, 1.15$\pm$1.1 by radiation doses respectively which are reduced 21.5% compared with untreated lymphocyte. Relative radiation induced apoptosis ratio of the lymphocytes is isolated from non-alcohol beer drunken donors is 1.22$\pm$1.1, 1.17$\pm$1.1, 1.13$\pm$1.3, 1.38$\pm$1.2, 1.32$\pm$1.1 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively which are reduced 10.8% compared with the untreated lymphocyte. Conclusion: As a result, it is suggested that beer may protect the lymphocyte from radiation damage and inhibit apoptosis.

  • PDF

Plumbagin from Plumbago Zeylanica L Induces Apoptosis in Human Non-small Cell Lung Cancer Cell Lines through NF-κB Inactivation

  • Xu, Tong-Peng;Shen, Hua;Liu, Ling-Xiang;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2325-2331
    • /
    • 2013
  • Objective: To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Materials and Methods: Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-${\kappa}B$ was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-${\kappa}B$ regulated apoptotic-related gene and activation of p65 and $I{\kappa}B{\kappa}$. Results: Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 ${\mu}mol/L$, 7.3 ${\mu}mol/L$, and 6.1 ${\mu}mol/L$ for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-${\kappa}B$. In addition to inhibition of NF-${\kappa}B$/p65 nuclear translocation, the compound also suppressed the degradation of $I{\kappa}B{\kappa}$. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-${\kappa}B$ in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Conclusions: Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-${\kappa}B$-regulated mitochondrial-mediated pathway, involving activation of ROS.

Anti-proliferation, Cell Cycle Arrest, and Apoptosis Induced by Natural Liquiritigenin from Licorice Root in Oral Squamous Cell Carcinoma Cells (구강편평세포암종 세포에서 감초 유래 Liquiritigenin의 항증식, 세포주기 정지 및 세포사멸 유도)

  • Kwak, Ah-Won;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.295-302
    • /
    • 2019
  • Liquiritigenin (LG) is a chiral flavonoid isolated from the roots of licorice. It exhibits multiple biological activities including anti-oxidant, anti-cancer, and anti-inflammatory effects. In particular though, the anti-cancer activity of LG in oral squamous cell carcinoma has yet to be elucidated, and LG-induced apoptosis in oral squamous cell carcinoma remains poorly understood. In the present study, we tested the role of LG in inducing apoptosis in oral squamous cell carcinoma cells. LG treatment of HN22 cells resulted in a dose-dependent inhibition of cell viability as detected by a 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. The induction of apoptosis in terms of Annexin V/7-Aminoactinomycin D staining, sub-G1 population, and multi-caspase activity were assessed with a $Muse^{TM}$ Cell Analyzer. Flow cytometric analysis revealed that LG treatment resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and CDC2 expression in a concentration-dependent manner. It also resulted in significant upregulation of p27. In addition, LG was seen to trigger the generation of reactive oxygen species and induce CCAAT/enhancer-binding protein homologous protein and 78-kDa glucose-regulated protein in concentration-dependent upregulation. The LG treatment of HN22 cells led to a loss of mitochondrial membrane potential (${\Delta}{\Psi}m$); it also reduced the levels of anti-apoptotic protein and increased the expression of apoptotic protease activating factor-1, cleaved poly (ADP-ribose)polymerase and Bax. Overall, our results indicate that the pro-apoptotic effects of LG in HN22 cells depend on the activation of both intrinsic and extrinsic signaling pathways. Thus, our results suggest that LG constitutes a natural compound with a potential role as an anti-tumor agent in oral squamous cell carcinoma.

Antioxidant activity of Bamboo powder and its immunoreactivity in the pig (대나무 분말의 항산화력과 돼지의 면역 활성에 미치는 영향)

  • Song, Yuno;Chu, Gyo-Moon;Jang, Sun-Hee;Goo, Ae-Jin;Ko, Yeoung-Gyu;Ha, Ji Hee;Lee, Jae-Young;Kang, Suk-Nam;Song, Young-Min;Cho, Jae-Hyeon
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.2
    • /
    • pp.111-122
    • /
    • 2014
  • The present study was designed to explore the antioxidant effect of Bamboo powder and its immunoreactivity in pigs. We investigated the functional properties of Bamboo extracts by means of measuring the contents of total polyphenols and flavonoid as well as determining ABST, DPPH radical scavenging activity, and hydroxyl radical scavenging activity and anticancer activity. The total phenolic compound and flavonoids contents of Bamboo extracts were 171.25 mg/g and 127.5 mg/g, respectively. The DPPH radical, hydroxyl radical, ABST radical scavenging activity of Bamboo extracts were 17.3%, 12.5% and 21.5%, respectively. Evidenced by MTT and cell cycle assay, Bamboo dose-dependently inhibited the cell proliferation and induced G0/G1-phase arrest in CHO cells at concentrations of 100, 250, and 500 ${\mu}g/ml$ Bamboo extracts. More than 80% of apoptotic cells were observed by staining with annexin V in 500 ${\mu}g/ml$ Bamboo-treated CHO cells, indicating that Bamboo had potent anticancer activities. Next, to investigate the effect of Bamboo on cytokine, immunoglobulin concentration, and blood compositions, flatting pigs were fed with Bamboo powder for 38 days. Flatting pigs were divided into 4 groups; basal diet (control), basal diet supplemented with 1% Bamboo powder (T1), 2% Bamboo powder (T2), and 3% Bamboo powder (T3). The level of hemoglobin increased in the all Bamboo-fed groups compared with the normal control group. In particular, platelet levels in the all Bamboo-treated groups increased by approximately 90% compared with the levels from pig on a normal control. Serum levels of immunoglobulins (IgG, IgA) in the pigs fed Bamboo powder were modestly increased, and the interferon-${\gamma}$ level also was strongly increased in 2% or 3% Bamboo-fed groups compared with the levels in control groups. Together, these results demonstrated that Bamboo extracts had an effective capacity of scavenging for ABTS, DPPH, and hydroxyl radicals and showed correlation with potent phenol and flavonoid contents, thus suggesting its antioxidant potential. Moreover, administration of Bamboo in 2~3% improved blood parameters and platelets, and especially immunity-related ones such as IgG, IgA, and interferon-${\gamma}$, leading to be potential feed additives in flatting pigs.

Effect of Trichostatin A on Anti HepG2 Liver Carcinoma Cells: Inhibition of HDAC Activity and Activation of Wnt/β-Catenin Signaling

  • Shi, Qing-Qiang;Zuo, Guo-Wei;Feng, Zi-Qiang;Zhao, Lv-Cui;Luo, Lian;You, Zhi-Mei;Li, Dang-Yang;Xia, Jing;Li, Jing;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7849-7855
    • /
    • 2014
  • Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of ${\beta}$-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for ${\beta}$-catenin, HDAC1and HDAC3 was tested by q-PCR. ${\beta}$-catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was $6.22{\pm}0.25%$, which increased to $7.17{\pm}0.20%$ and $18.1{\pm}0.42%$ in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of ${\beta}$-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of ${\beta}$-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of ${\beta}$-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/${\beta}$-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.

MiR-126-3p inhibits apoptosis and promotes proliferation by targeting phosphatidylinositol 3-kinase regulatory subunit 2 in porcine ovarian granulosa cells

  • Zhou, Xiaofeng;He, Yingting;Jiang, Yao;He, Bo;Deng, Xi;Zhang, Zhe;Yuan, Xiaolong;Li, Jiaqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.879-887
    • /
    • 2020
  • Objective: Numerous studies have indicated that the apoptosis and proliferation of granulosa cells (GCs) are closely related to the normal growth and development of follicles and ovaries. Previous evidence has suggested that miR-126-3p might get involved in the apoptosis and proliferation of GCs, and phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2) gene has been predicted as one target of miR-126-3p. However, the molecular regulation of miR-126-3p on PIK3R2 and the effects of PIK3R2 on porcine GCs apoptosis and proliferation remain virtually unexplored. Methods: In this study, using porcine GCs as a cellular model, luciferase report assay, mutation and deletion were applied to verify the targeting relationship between miR-126-3p and PIK3R2. Annexin-V/PI staining and 5-ethynyl-2'-deoxyuridine assay were applied to explore the effect of PIK3R2 on GCs apoptosis and proliferation, respectively. Real-time quantitative polymerase chain reaction and Western Blot were applied to explore the regulation of miR-126-3p on PIK3R2 expression. Results: We found that miR-126-3p targeted at PIK3R2 and inhibited its mRNA and protein expression. Knockdown of PIK3R2 significantly inhibited the apoptosis and promoted the proliferation of porcine GCs, and significantly down-regulated the mRNA expression of several key genes of PI3K pathway such as insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR), pyruvate dehydrogenase kinase 1 (PDK1), and serine/threonine kinase 1 (AKT1). Conclusion: MiR-126-3p might target and inhibit the mRNA and protein expressions of PIK3R2, thereby inhibiting GC apoptosis and promoting GC proliferation by down-regulating several key genes of the PI3K pathway, IGF1R, INSR, PDK1, and AKT1. These findings would provide great insight into further exploring the molecular regulation of miR-126-3p and PIK3R2 on the functions of GCs during the folliculogenesis in female mammals.

Cell Protective Effects of Enzymatic Hydrolysates of Citrus Peel Pectin (귤피 펙틴 유래 효소적 가수분해물의 세포 보호 효과)

  • Kwon, Soon Woo;Ko, Hyun Ju;Bae, Jun Tae;Kim, Jin Hwa;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.75-85
    • /
    • 2016
  • Pectin, a naturally occurring polysaccharide, has in recent years attracted considerable attention. Its benefits are increasingly appreciated by scientists and consumers due to its safety and usefulness. The chemistry and gel-forming characteristics of pectin have enabled to be used in pharmaceutical industry, health promotion and treatment. Yet, it has been rarely used in cosmetics because of its incompatibility with many cosmetic ingredients, including alcohols, and unstable viscosity of pectin gels under various pH and salt conditions. However, low-molecular-weight pectin oligomers have excellent biological activities, and depolymerization of pectin to produce cosmetic ingredients would be very useful. In this study, we attempted the development of cosmetic ingredients using pectin with an excellent effect on human skin. We developed a bio-conversion process that uses enzymatic hydrolysis to produce pectin hydrolysates containing mainly low-molecular-weight pectin oligomers. Gel permeation chromatography was used to determined the ratio of hydrolysis. The molecular weight of the pectin hydrolysates obtained varied between 200 and 2,700 Da. The two newly developed low-molecular-weight pectin hydrolysates, LMPH A and B, had higher anti-oxidative activities than pectin or D-galacturonic. Exposure to UVB radiation induces apoptotic cell death in epidermal cells. Annexin V binding and propidium iodide uptake were measured by flow cytometry to evaluate UVB-induced cell death in HaCaT cells. Both LMPH A and B reduced UVB-induced cell death and increased cell proliferation by 22% and 30% at 0.5% concentration respectively, while pectin had no significant activity. In conclusion, this study suggests that the newly developed low-molecular-weight pectin hydrolysates can be used as safe and biologically active cosmetic ingredients.