MiR-126-3p inhibits apoptosis and promotes proliferation by targeting phosphatidylinositol 3-kinase regulatory subunit 2 in porcine ovarian granulosa cells |
Zhou, Xiaofeng
(Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University)
He, Yingting (Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University) Jiang, Yao (Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University) He, Bo (Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University) Deng, Xi (Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University) Zhang, Zhe (Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University) Yuan, Xiaolong (Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University) Li, Jiaqi (Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University) |
1 | Rodriguez KF, Couse JF, Jayes FL, et al. Insufficient luteinizing hormone-induced intracellular signaling disrupts ovulation in preovulatory follicles lacking estrogen receptor-. Endocrinology 2010;151:2826-34. https://doi.org/10.1210/en.2009-1446 DOI |
2 | Lei L, Jin S, Gonzalez G, Behringer RR, Woodruff TK. The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol 2010;315:63-73. https://doi.org/10.1016/j.mce.2009.09.021 DOI |
3 | Hamm ML, Bhat GK, Thompson WE, Mann DR. Folliculogenesis is impaired and granulosa cell apoptosis is increased in leptin deficient mice. Biol Reprod 2004;71:66-72. https://doi.org/10.1095/biolreprod.104.027292 DOI |
4 | Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009;10:126-39. https://doi.org/10.1038/nrm2632 DOI |
5 | Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 2008;149:6207-12. https://doi.org/10.1210/en.2008-0294 DOI |
6 | Nagaraja AK, Andreu-Vieyra C, Franco HL, et al. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 2008;22:2336-52. https://doi.org/10.1210/me.2008-0142 DOI |
7 | Yao G, Yin M, Lian J, et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 2010;24:540-51. https://doi.org/10.1210/me.2009-0432 DOI |
8 | Lin F, Li R, Pan ZX, et al. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS ONE 2012;7:e38640. https://doi.org/10.1371/journal.pone.0038640 DOI |
9 | Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/ pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 2002;511:145-78. https://doi.org/10.1016/S1383-5742(02)00009-1 DOI |
10 | Ma T, Jiang H, Gao Y, et al. Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene. J Appl Genet 2011;52:481-6. https://doi.org/10.1007/s13353-011-0055-z DOI |
11 | Mao Z, Fan L, Yu Q, et al. Abnormality of klotho signaling is involved in polycystic ovary syndrome. Reprod Sci 2018;25:372-83. https://doi.org/10.1177/1933719117715129 DOI |
12 | Yuan X, Deng X, Zhou X, et al. MiR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells. In Vitro Cell Dev Biol Anim 2018;54:715-24. https://doi.org/10.1007/s11626-018-0292-0 DOI |
13 | Qu Y, Wu J, Deng JX, et al. MicroRNA-126 affects rheumatoid arthritis synovial fibroblast proliferation and apoptosis by targeting PIK3R2 and regulating PI3K-AKT signal pathway. Oncotarget 2016;7:74217-26. https://doi.org/10.18632/oncotarget.12487 DOI |
14 | Rodrigues Alves APN, Fernandes JC, Fenerich BA, et al. IGF1R/IRS1 targeting has cytotoxic activity and inhibits PI3K/ AKT/mTOR and MAPK signaling in acute lymphoblastic leukemia cells. Cancer Lett 2019;456:59-68. https://doi.org/10.1016/j.canlet.2019.04.030 DOI |
15 | Wu XJ, Zhao ZF, Kang XJ, Wang HJ, Zhao J, Pu XM. MicroRNA-126-3p suppresses cell proliferation by targeting PIK3R2 in Kaposi's sarcoma cells. Oncotarget 2016;7:36614-21. https://doi.org/10.18632/oncotarget.9311 DOI |
16 | Sessa R, Seano G, di Blasio L, et al. The miR-126 regulates angiopoietin-1 signaling and vessel maturation by targeting p85beta. Biochim Biophys Acta 2012;1823:1925-35. https://doi.org/10.1016/j.bbamcr.2012.07.011 DOI |
17 | Gao J, Zhou XL, Kong RN, Ji LM, He LL, Zhao DB. microRNA -126 targeting PIK3R2 promotes rheumatoid arthritis synovial fibro-blasts proliferation and resistance to apoptosis by regulating PI3K/AKT pathway. Exp Mol Pathol 2016;100:192-8. https://doi.org/10.1016/j.yexmp.2015.12.015 DOI |
18 | Wang B, Zhao CH, Sun G, et al. IL-17 induces the proliferation and migration of glioma cells through the activation of PI3K/Akt1/NF-kappa B-p65. Cancer Lett 2019;447:93-104. https://doi.org/10.1016/j.canlet.2019.01.008 DOI |
19 | Bai X, Chen XH, Liu YH, et al. Effects of water extract and crude polysaccharides from Liriope spicata var. prolifera on InsR/IRS-1/PI3K pathway and glucose metabolism in mice. J Ethnopharmacol 2009;125:482-6. https://doi.org/10.1016/j.jep.2009.07.007 DOI |
20 | Sambandam V, Frederick MJ, Shen L, et al. PDK1 mediates NOTCH1-mutated head and neck squamous carcinoma vulnerability to therapeutic PI3K/mTOR inhibition. Clin Cancer Res 2019;25:3329-40. https://doi.org/10.1158/1078-0432.CCR-18-3276 DOI |
21 | Sirotkin AV, Ovcharenko D, Grossmann R, Laukova M, Mlyncek M. Identification of MicroRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol 2009;219:415-20. https://doi.org/10.1002/jcp.21689 DOI |
22 | Dai L, Xu J, Liu S, et al. Characterization of miR-126-3p and its target talin2 in the bovine corpus luteum during the oestrus cycle. Reprod Domest Anim 2014;49:913-9. https://doi.org/10.1111/rda.12400 DOI |
23 | Cui W, Li Q, Feng L, Ding W. MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland. Mol Cell Biochem 2011;355:17-25. https://doi.org/10.1007/s11010-011-0834-1 DOI |
24 | Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010;223:49-56. https://doi.org/10.1002/jcp.21999 DOI |
25 | Fan HY, Richards JS. Minireview: Physiological and pathological actions of RAS in the ovary. Mol Endocrinol 2010;24:286-98. https://doi.org/10.1210/me.2009-0251 DOI |
26 | Zeleznik AJ, Saxena D, Little-Ihrig L. Protein kinase B is obligatory for follicle-stimulating hormone-induced granulosa cell differentiation. Endocrinology 2003;144:3985-94. https://doi.org/10.1210/en.2003-0293 DOI |
27 | Brown C, LaRocca J, Pietruska J, et al. Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKBalpha/Akt1. Biol Reprod 2010;82:246-56. https://doi.org/10.1095/biolreprod.109.077925 DOI |
28 | Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk): evidence for a kinaseindependent signaling by FSH in granulosa cells. Mol Endocrinol 2000;14:1283-300. https://doi.org/10.1210/mend.14.8.0500 DOI |
29 | Zheng W, Nagaraju G, Liu Z, Liu K. Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol 2012;356:24-30. https://doi.org/10.1016/j.mce.2011.05.027 DOI |
30 | Reddy P, Adhikari D, Zheng W, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet 2009;18:2813-24. https://doi.org/10.1093/hmg/ddp217 DOI |
31 | Baker J, Hardy MP, Zhou J, et al. Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol 1996;10:903-18. https://doi.org/10.1210/mend.10.7.8813730 DOI |
32 | Bachelot A, Monget P, Imbert-Bollore P, et al. Growth hormone is required for ovarian follicular growth. Endocrinology 2002;143:4104-12. https://doi.org/10.1210/en.2002-220087 DOI |
33 | Gareis NC, Huber E, Hein GJ, et al. Impaired insulin signaling pathways affect ovarian steroidogenesis in cows with COD. Anim Reprod Sci 2018;192:298-312. https://doi.org/10.1016/j.anireprosci.2018.03.031 DOI |
34 | Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001;122:829-38. https://doi.org/10.1530/rep.0.1220829 DOI |
35 | McGee EA, Hsueh AJW. Initial and cyclic recruitment of ovarian follicles. Endocr Rev 2000;21:200-14. https://doi.org/10.1210/edrv.21.2.0394 DOI |
36 | Reddy P, Shen L, Ren C, et al. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol 2005;281:160-70. https://doi.org/10.1016/j.ydbio.2005.02.013 DOI |
37 | Fiedler SD, Carletti MZ, Hong XM, Christenson LK. Hormonal regulation of microRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 2008;79:1030-7. https://doi.org/10.1095/biolreprod.108.069690 DOI |
38 | Shimizu T, Kosaka N, Murayama C, Tetsuka M, Miyamoto A. Apelin and APJ receptor expression in granulosa and theca cells during different stages of follicular development in the bovine ovary: Involvement of apoptosis and hormonal regulation. Anim Reprod Sci 2009;116:28-37. https://doi.org/10.1016/j.anireprosci.2009.01.009 DOI |
39 | Zhang P, Wang J, Lang H, et al. Knockdown of CREB1 promotes apoptosis and decreases estradiol synthesis in mouse granulosa cells. Biomed Pharmacother 2018;105:1141-6. https://doi.org/10.1016/j.biopha.2018.06.101 DOI |
40 | Maneixa L, Antonsonb P, Humireb P, et al. Estrogen receptor exon 3-deleted mouse: The importance of non-ERE pathways in signaling. Proc Natl Acad Sci USA 2015;112: 5135-40. https://doi.org/10.1073/pnas.1504944112 DOI |
41 | Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 2001;234:339-51. https://doi.org/10.1006/dbio.2001.0269 DOI |
42 | Woodruff TK, Mayo KE. To beta or not to beta: estrogen receptors and ovarian function. Endocrinology 2005;146:3244-6. https://doi.org/10.1210/en.2005-0630 DOI |