• Title/Summary/Keyword: annealing

Search Result 5,927, Processing Time 0.029 seconds

Characteristics and Deposition of CuInS2 film for thin solar cells via sol-gel method0 (Sol-gel법에 의한 박막태양전지용 CuInS2 박막의 증착과 특성)

  • Lee, Sang-Hyun;Lee, Seung-Yup;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.158-163
    • /
    • 2011
  • $CuInS_2$ thin films were prepared using a sol-gel spin-coating method. That makes large scale substrate coating, simple equipment, easy composition control available. The structural and optical properties of $CuInS_2$ thin films that include less toxic materials (S) instead of Se, tetragonal chalcopyrite structure. Copper acetate monohydrate ($Cu(CH_3COO)_2{\cdot}H2O$) and indium acetate ($In(CH_3COO)_3$) were dissolved into 2-propanol and l-propanol, respectively. The two solutions were mixed into a starting solution. The solution was dropped onto glass substrate, rotated at 3000 rpm, and dried at $300^{\circ}C$ for Cu-In as-grown films. The as-grown films were sulfurized inside a graphite container box and chalcopyrite phase of $CuInS_2$ was observed. To determine the optical properties measured optical transmittance of visible light region (380~770 nm) were less than 30 % in the overall. The XRD pattern shows that main peak was observed at Cu/In ratio 1.0 and its orientation was (112). As annealing temperature increases, the intensity of (112) plane increases. The unit cell constant are a = 5.5032 and c = 11.1064 $\AA$, and this was well matched with JCPDS card. The optical transmittance of visible region was below than 30 %.

Comparison of Spatial Optimization Techniques for Solving Visibility Location Problem (가시권 문제를 위한 공간최적화 기법 비교 연구)

  • Kim, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.156-170
    • /
    • 2006
  • Determining the best visibility positions on terrain surface has been one of the frequently used analytical issues in GIS visibility analysis and the search for a solution has been carried out effectively using spatial search techniques. However, the spatial search process provides operational and methodological challenges for finding computational algorithms suitable for solving the best visibility site problem. For this problem, current GIS visibility analysis has not been successful due to limited algorithmic structure and operational performance. To meet these challenges, this paper suggests four algorithms explored robust search techniques: an extensive iterative search technique; a conventional solution based on the Tornqvist algorithm; genetic algorithm; and simulated annealing technique. The solution performance of these algorithms is compared on a set of visibility location problems and the experiment results demonstrate the useful feasibility. Finally, this paper presents the potential applicability of the new spatial search techniques for GIS visibility analysis by which the new search algorithms are of particular useful for tackling extensive visibility optimization problems as the next GIS analysis tool.

  • PDF

Microstructure and Magnetic Properties of Rapidly Solidified Nd-Fe(-Co) and Sm-Co(-Fe) Laves Compounds (급속냉각된 Nd-Fe(-Co)와 Sm-Co(-Fe)계 Laves 화합물의 미세조직과 자기특성)

  • 이우영;최승덕;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 1991
  • Laves phases of $NdFe_2$, $Nd{(Fe_{0.5})}_2$, $SmCo_2$ and $Sm{(Fe_{0.5}Co_{0.5})}_2$ stoichiometry were prepared using a rapid solidification technology. Low temperature magnetic properties show ferromagnetic behaviors for the $Nd{(Fe_{0.5}Co_{0.5})}_2$, $SmCo_2$ and $Sm{(Fe_{0.5}Co_{0.5})}_2$Nd(Feo,Coo,) Laves compounds while a sort of spin reorientation has been suggested for the supposed composition of $NdFe_2$ alloy. This rapidly solidified $NdFe_2$ alloy is believed to consist of metastable rhombohedral $NdFe_7$ phase plus fine particles of Nd-rich phase. Some evidence of phase transition from the mixture of unstable $NdFe_7$ compound plus Nd-rich to $Nd_2Fe_{17}$ plus Fe-Nd-O phase was obtained after annealing the $NdFe_2$, alloy. The pseudo-binary Laves compound, $Sm{(Fe_{0.5}Co_{0.5})}_2$ exhibits a high coercivityof 4 kOe at room temperature with Curie temperature of $400^{\circ}C$ while the $Nd{(Fe_{0.5}Co_{0.5})}_2$ compound shows a magnetic moment of $2.8\;{\mu}_B/f.u.$.

  • PDF

The Magnetic Properties of Nanocrystalline Fe73.5Cu1Nb3Si15.5B7 Alloy Powder Cores (Fe73.5Cu1Nb3Si15.5B7나노 결정립 합금 분말 코아의 자기적 특성)

  • Noh, T.H.;Choi, H.Y.;Ahn, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • The annealing-temperature dependence of magnetic properties in compressed powder cores being composed of ball-milled F $e_{73.5}$C $u_1$N $b_3$S $i_{15.5}$ $B_{7}$ alloy powders (size 250∼850${\mu}{\textrm}{m}$) and 5 wt% of ceramic insulators has been investigated. When annealed at 5$50^{\circ}C$ for 1 h and so transformed to $\alpha$-Fe phase nanocrystalline structure with the grain size of 11 nm (electrical resistivity : 110 $\mu$$.$cm), the highest effective permeability of 125 and quality factor of 53 were obtained, and the permeability persisted up to about 500 KHz. Further the core loss measured at the frequency of 50 KHz and the induction amplitude of 0.1 T was very low (230 mW/㎤). However the dc bias characteristics was not satisfactory as compared to that of conventional powder core materials(MPP, Sendust etc.). The inferior dc bias property of F $e_{73.5}$C $u_1$N $b_3$S $i_{15.5}$ $B_{7}$ alloy powder cores was attributed to the fact that the size of powder was too large for obtaining the same permeability with that of conventional materials.

Magnetic Hardening of Rapidly Solidified $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ Compounds (급속냉각된 $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ 화합물에서 생성된 신 강자성상)

  • Choong-Jin Yang;E. B. Park;S. D. Choi
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.226-232
    • /
    • 1994
  • Rapidly solidified $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ compound were found to crystallize in the ${Sm(Fe,\;M)}_{7}$ based stable magnetic phase by introducing a second transition element into the Sm-Fe binary system. The ${Sm(Fe,\;M)}_{7}$ phase exhibits the highest Curie temperatuer ($T_{c}=355^{\circ}C$) ever Known in the Sm-Fe magnetic systems with a quite high intrinsic coercivity($_{i}H_{c}=3~6\;kOe $). The ${Sm(Fe,\;M)}_{7}$ phase remains stable even after annealing if once form during the rapid solidification. The primary reason for the high coercive force is due to the fine grain size($2000~8000\;{\AA}$)of the magnetic ${Sm(Fe,\;M)}_{7}$ matrix phase, and the enhanced Curie temperature is attributed to the extended solid-solubility of the additive transition elements in Fe matrix, which leads to volume expansion of the ${Sm(Fe,\;M)}_{7}$ cell causing an enhanced coupling constant of Fe atoms.

  • PDF

A Study on the Perpendicular Magnetic Anisotropy of Co-Pt Alloy Thin Films Deposited by DC Magnetron Sputtening (직류 마그네트론 스퍼터링으로 형성한 Co-Pt 합금박막의 수직자화기구에 대한 연구)

  • 박성언;김기범
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.263-271
    • /
    • 1994
  • We have produced $Co_{1-x}Pt_{x}(X\;=\;0.53\;and\;0.75)$ alloy films by DC magnetron sputtering at various substrate temperatures and sputtering pressures. Sputter-deposited Co-Pt alloy films showed a strong (111) texture, and the degree of (111) texture of the as-deposited film was found to depend on the substrate temperature and Ar pressure. However, we observed that the degree of (111) texture did not affect the magnetic properties. In addition, we have investigated the effect of heat-treatment on magnetic properties of these films. While the magnetic properties of the $Co_{0.25}Pt_{0.75}$ alloy films showed no noticeable changes, the coercivities and the squarenesses of the $Co_{0.47}Pt_{0.53}$ alloy films were drastically increased by annealing. Structural analysis using transmission electron microscopy(TEM) and x-ray diffractornetry(XRD) revealed that $CoPt(L1_{0})$ and $CoPt_3(L1_{2})$ ordered phases, respectively, were formed, each with a strong (111) texture. By comparing the magnetic properties between $CoPt(L1_{0})$ and $CoPt_3(L1_{2})$ ordered phases in relation to the atomic arrangements in a unit cell, we conclude that the magnetic anisotropy in the Co-Pt alloy system depends mainly on the atomic arrangements of Co and Pt.

  • PDF

Exchange Bias Perpendicular Magnetic Anisotropy by Buffer Layer and Inserted Layer in [Pd/Co]5/FeMn Multilayer ([Pd/Co]5/FeMn 막에서의 바닥층과 삽입층에 의한 교환바이어스수직자기이방성)

  • Joo, Ho-Wan;An, Jin-Hee;Lee, Mi-Sun;Kim, Bo-Keun;Choi, Sang-Dea;Lee, Kee-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.192-195
    • /
    • 2004
  • Magnetic properties by exchange biased perpendicular magnetic anisotropy in [Pd(0.8 nm)/Co(0.8 nm)]$_{5}$/FeMn(15 nm) multilayers deposited by dc magnetron sputtering system are investigated. As inserted Pd layer of interface between [Pd/Co] multilayer and FeMn film, the Hex of perpendicular anisotropy was improved from 127 Oe to 145 Oe. But result of an experiment by thermal stability, the Hex of the case that an inserted layer was inserted in decreased from low 20$0^{\circ}C$ in about 5$0^{\circ}C$ more if not inserted. If Ta was a buffer layer, the experiment results along material of buffer layer, the H$_{ex}$ obtained the largest 127 Oe. And if Pd was a buffer layer, H$_{ex}$ obtained the largest 169 Oe. Also, the Hc in buffer layer of Ta and Pd obtained the largest 203 Oe and 453 Oe, respectively.

Influence of Co-sputtered HfO2-Si Gate Dielectric in IZO-based thin Film Transistors (HfO2-Si의 조성비에 따른 HfSiOx의 IZO 기반 산화물 반도체에 대한 연구)

  • Cho, Dong Kyu;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • In this work, we investigated the enhanced performance of IZO-based TFTs with $HfSiO_x$ gate insulators. Four types of $HfSiO_x$ gate insulators using different diposition powers were deposited by co-sputtering $HfO_2$ and Si target. To simplify the processing sequences, all of the layers composing of TFTs were deposited by rf-magnetron sputtering method using patterned shadow-masks without any intentional heating of substrate and subsequent thermal annealing. The four different $HfSiO_x$ structural properties were investigated x-ray diffraction(XRD), atomic force microscopy(AFM) and also analyzed the electrical characteristics. There were some noticeable differences depending on the composition of the $HfO_2$ and Si combination. The TFT based on $HfSiO_x$ gate insulator with $HfO_2$(100W)-Si(100W) showed the best results with a field effect mobility of 2.0[$cm^2/V{\cdot}s$], a threshold voltage of -0.5[V], an on/off ratio of 5.89E+05 and RMS of 0.26[nm]. This show that the composition of the $HfO_2$ and Si is an important factor in an $HfSiO_x$ insulator. In addition, the effective bonding of $HfO_2$ and Si reduced the defects in the insulator bulk and also improved the interface quality between the channel and the gate insulator.

Characterization and observation of Cu-Cu Thermo-Compression Bonding using 4-point bending test system (4-point bending test system을 이용한 Cu-Cu 열 압착 접합 특성 평가)

  • Kim, Jae-Won;Kim, Kwang-Seop;Lee, Hak-Joo;Kim, Hee-Yeon;Park, Young-Bae;Hyun, Seung-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • The quantitative interfacial adhesion energy of the Cu-Cu direct bonding layers was evaluated in terms of the bonding temperature and Ar+$H_2$ plasma treatment on Cu surface by using a 4-point bending test. The interfacial adhesion energy and bonding quality depend on increased bonding temperature and post-annealing temperature. With increasing bonding temperature from $250^{\circ}C$ to $350^{\circ}C$, the interfacial adhesion energy increase from $1.38{\pm}1.06$ $J/m^2$ to $10.36{\pm}1.01$ $J/m^2$. The Ar+$H_2$ plasma treatment on Cu surface drastically increase the interfacial adhesion energy form $1.38{\pm}1.06$ $J/m^2$ to $6.59{\pm}0.03$ $J/m^2$. The plasma pre-treatment successfully reduces processing temperature of Cu to Cu direct bonding.

Study on the Structural Optimization based on Equivalent Static Load under Dynamic Load (동하중을 받는 구조물의 등가정하중 기반 구조 최적화 연구)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.421-427
    • /
    • 2014
  • Most of the structure of the real world is influenced under dynamic loads. However, when structure analysis and the structural optimization is performed, it is assumed that the static load acts on structure. When considering the actual load of dynamic loads in order to take into account a variety of loads, computational resources and time becomes a big burden in terms of cost. However, considering only the simple static load condition is not preferable for structural safety. For this reason, a lot of studies have been conducted trying to compensate this trouble by applying weight factor or replacing dynamic load with the equivalent static load. In this study, structural optimization techniques for structures under dynamic loads is proposed by applying the equivalent static load. From previous study, after determining the positions of equivalent static load based on primary degrees of freedom, the equivalent static load is calculated through the optimization process. In this process, the equivalent static load optimization of previous research is complemented by adding constraints to avoid excessively large load extraction. In numerical examples, dynamic load is applied to the truss structure and the plate. Then, the reliability of the proposed optimization technique is verified by carrying out size optimization with the equivalent static load.