• Title/Summary/Keyword: angular motion error

Search Result 74, Processing Time 0.033 seconds

Stripping Method of Ring Laser Gyroscope Based on Measurement Model of Dither Motion (디더 운동 측정치 모델 기반 링레이저 자이로 스트리핑 방법)

  • Kim, Cheon-Joong;Shim, Kyu-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.531-536
    • /
    • 2014
  • There are trapping and stripping methods as the technique to remove the dither motion from RLG(Ring Laser Gyro) output. V/F converter output of angular sensor to measure the dither motion is used in stripping method. But bias and scale factor error is always included in V/F converter output and is a critical limiting factor for the wide application of stripping method to RLG. Therefore there have been many researches to solve this problem. The method to accurately estimate the bias and scale factor error of V/F converter using measurements of the angular sensor acquired at data sampling rate of INS is presented in this paper. To this end, stripping technique based on model of dither motion is newly applied.

Noncommutativity Error Analysis with RLG-based INS (링레이저 자이로 관성항법시스템의 비교환 오차 해석)

  • Kim, Gwang-Jin;Park, Chan-Guk;Yu, Myeong-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • In this paper, we analyze a noncommutativity error that is not able to be compensated with integrating gyro outputs in RLG-based INS. The system can suffer from some motion known as RLG dithering motion, coning motion, ISA motion derived by an AV mount and vehicle real dynamic motion. So these motions are a cause of the noncommutativity error, the system error derived by each motion has to be analyzed. For the analysis, a relation between rotation vector and gyro outputs is introduced and applied to define the coordinate transformation matrix and the angular vector.

Development of an Ultra Precision Hydrostatic Guideway Driven by a Coreless Linear Motor

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.55-60
    • /
    • 2005
  • In order to develop the hydrostatic guideways driven by a core less linear motor for ultra precision machine tools, a prototype of guideway is designed and tested. A coreless linear DC motor with a continuous force of 156 N and a laser scale with a resolution of 0.01 ㎛ are used in the system. Experimental analysis on the static stiffness, motion errors, positioning error and its repeatability, micro step response and velocity variation of the guideway are performed. The guideway shows infinite stiffness within 50 N applied load in the feed direction, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ㎛ linear motion error and 0.1 arcsec angular motion error are acquired. The guideway also reveals 0.21 ㎛ positioning error and 0.09 ㎛ repeatability, and it shows stable responses following a 0.01 ㎛ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is estimated that the hydrostatic guideway driven by a coreless linear motor is very useful for the ultra precision machine tools.

Analysis on the motion characteristics of surface XY aerostatic stage (평면 XY 공기정압 스테이지의 운동특성 분석)

  • 황주호;박천홍;이찬홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.359-362
    • /
    • 2003
  • The aerostatic stage. which is used in semiconductor process, is demanded higher velocity and more precise accuracy for higher productivity and integrated performance. So, in the case of XY stage, H type structure, which is designed two co-linear axis of guide-way, driving force in one surface, has advantage of velocity and accuracy compared to conventional tacked type XY stage. To analyze characteristics of H type aerostatic stage, H type aerostatic surface XY stage is made, which is driven by linear motor and detected position with precise optical linear scale. And, analyze characteristics of motion error, effect of angular motion on positioning accuracy error and effect of simultaneous control on variation of velocity.

  • PDF

Comparisons Among Functional Methods of Axis of Rotation Suitable for Describing Human Joint Motion (인체 관절운동 기술에 적합한 회전축 추정방법의 비교)

  • Kim, Jin-Uk
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.449-458
    • /
    • 2011
  • There are many functional methods for estimating the mean axis of rotation of a joint. However, it is still a controversial issue which method is superior. The purpose of this study was to compare functional methods for estimated axes of rotation from synthetic data. The comparison was made in terms of suitabilities on describing humans in sports. For a more practical situation, the axis error as well as measurement and marker movement error were applied to generated data. Simulations having 1000 times of 80 rotational displacements were performed. The functional methods used in the study were two transformation methods, two fitting methods, and one more transformation method called M. The M method is a combination of S$\ddot{o}$derk & Wedin(1993) and Mardia & Jupp(2000). Another factor of the study was angular velocity with levels of .01, .025, .05, .5 and 1 rad/s. The method M resulted in unbiased, stable, and consistent axis of rotation vectors in all levels of angular velocity except .01 rad/s. Therefore, the method M had the highest validity and reliability of all the methods. The fitting methods were very sensitive in small angular velocities and stable only in the velocities of more than .5 rad/s. The most suitable method for analyzing human motion by using marker photogrammetry is M.

Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Table (유정압테이블의 정밀도향상을 위한 수정가공 알고리즘)

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.62-69
    • /
    • 2002
  • For improving the motion accuracy of hydrostatic table, corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. reverse analysis is performed firstly to estimate rail profile from measured linear and angular motion error, in the algorithm. For the next step, corrective machining information is decided as referring to the estimating rail profile. Finally, motion errors on correctively machined rail are analized by using motion error analysis method proposed in the previous paper. These processes can be iterated until the analized motion errors are satisfied with target accuracy. In order to verify the validity of the algorithm theoretically, motion errors by the estimated rail, after corrective machining, are compared with motion errors by true rail assumed as the measured value. Estimated motion errors show good agreement with assumed values, and it is confirmed that the algorithm is effective to acquire the corrective machining information to improve the accuracy of hydrostatic table.

Flexure Analysis of Inertial Navigation Systems

  • Kim, Kwang-Jin;Park, Chan-Gook;Park, Jai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1958-1961
    • /
    • 2004
  • Ring Laser Gyroscopes used as navigational sensors inherently experience a lock-in region, where very low rotational rates are not measurable. Most RLG manufacturers use a mechanical dither motor that applies a small oscillatory rotational motion larger than this region to resolve this problem. Any input acceleration that bends this dithering axis causes flexure error, which is a noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

  • PDF

Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.60-67
    • /
    • 2004
  • For improving the motion accuracy of hydrostatic tables, a corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. The reverse analysis is performed firstly to estimate the rail profile from the measured linear and angular motion error, in the algorithm. For the next step, the corrective machining information is obtained based upon the estimated rail pronto. Finally, the motion errors on the correctively machined rail are analyzed by using the motion error analysis method. These processes are iterated until the analyzed motion errors are satisfactory within the target accuracy. In order to verify the validity of the algorithm theoretically, the motion errors calculated by the estimated rail after the corrective machining process, are compared with those by the true rail which is previously assumed as the initially measured value. The motion errors calculated using the estimated rail show good agreement with the assumed values, and it is shown that the algorithm is effective in acquiring the corrective machining information to improve the accuracy of hydrostatic tables.

Observability Analysis of Alignment Errors in GPS/INS

  • Lee Mun Ki;Hong Sinpyo;Lee Man Hyung;Kwon Sun-Hong;Chun Ho-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1253-1267
    • /
    • 2005
  • Misalignment can be an important problem in the integration of GPS/INS. Observability analysis of the alignment errors in the integration of low-grade inertial sensors and multi-antenna GPS is presented in this paper. A control-theoretic approach is adopted to study the observability of time-varying error dynamics models. The relationship between vehicle motions and the observability of the errors in the lever arm and relative attitude between GPS antenna array and IMU is given. It is shown that alignment errors can be made observable through maneuvering. The change of acceleration makes the components of the relative attitude error that are orthogonal to the direction of the acceleration change observable. The change of angular velocity makes the components of the lever arm error that are orthogonal to the direction of the angular velocity observable. The motion of constant angular velocity has no influence on the estimation of the lever arm.

The Effect of Taping on the Range of Motion and Proprioception at the Ankle Joint (테이핑이 발목의 관절가동범위와 고유수용성감각에 미치는 영향)

  • Kim, Chang-In;Kwon, Oh-Yun;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.43-52
    • /
    • 2001
  • This study was designed to determine the effect of ankle taping and short period of walking on the treadmill on the range of motion (ROM) and proprioception at the ankle joint. Twenty healthy male subjects (mean age=24.2 yr) participated in this study. Goniometry and videotape replaying method were used to measure the ankle ROM. Passive sagittal and frontal plane motions were measured. The difference in degree between the stimulus point and the reproduced point was defined as an angular error. The measurements were performed at four different phases: pre-taping (PRT), post-taping immediately (POT), post-5 minute walking with taping (P5M), and post-10 minute walking with taping (P10M). The ankle of dominant limb was taped by a certified athletic trainer using a closed basket weave technique. Participants walked on the treadmill at 2.5 mph. The results showed that the mean of the sagittal plane motion at PRT, POT, P5M, and P10M was 53.0, 30.5, 36.2, and 40.2 degrees, respectively. The frontal plane motion at PRT, POT, P5M, and P10M was 33.6, 13.9, 15.7, and 18.6 degrees, respectively. The angular error at PRT, POT, P5M, and P10M was 5.5, 1.6, 1.8, and 1.9 degrees, respectively. After 10 minutes of walking, the sagittal plane motion and frontal plane motion was increased by 9.7 and 4.7 degrees compared with POT, respectively. The proprioception was significantly improved after the application of ankle taping. Both the restriction of frontal plane motion and proprioception improvement at the ankle joint may contribute to ankle stability during walking.

  • PDF