• Title/Summary/Keyword: angular frequency

Search Result 375, Processing Time 0.029 seconds

A Performance Analysis of an Adaptive Sector Cell System using the Measured Urban Wireless Channel Data (도심 무선채널의 실측데이터를 이용한 적응 섹터 셀 시스템의 성능분석)

  • Ko, Hak-Lim;Park, Byeong-Hoon;Lee, Jong-Heon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • In this paper we analyze the performance of an adaptive sector cell system, which is adopted to maintain the traffic balance between sectors and to utilize the cell resources effectively, using the data collected from real channel environments. In the data measurements, we transmitted the QPSK modulated signal with carrier frequency of 1.95GHz and received the signals using the 8x4 array antenna equipped on the top of buildings in the urban area. We analyzed the angular distribution and the delay spread of a user signal and analyzed angular distribution of mobile users in a cell using the collected data. Also, we propose the vector channel modeling using the estimated pdf(probability distribution function) of the analyzing results. Through the proposed channel modeling the improvement of the call blocking rate was analyzed when using the adaptive sector cell system, and computer simulations show that the call blocking rate of the adaptive sector cell system was much lower than that of the fixed sector cell system. Additionally, it shows that the call blocking rate increases severely in the fixed sector cell system while the difference of the call blocking rate was smaller in the adaptive sector cell system, as the user density of the spatial distribution increases.

  • PDF

The Forecasting a Maximum Barbell Weight of Snatch Technique in Weightlifting (역도 인상동작 성공 시 최대 바벨무게 예측)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study was to predict the failure or success of the Snatch-lifting trial as a consequence of the stand-up phase simulated in Kane's equation of motion that was effective for the dynamic analysis of multi-segment. This experiment was a case study in which one male athlete (age: 23yrs, height: 154.4cm, weight: 64.5kg) from K University was selected The system of a simulation included a multi-segment system that had one degree of freedom and one generalized coordinate for the shank segment angle. The reference frame was fixed by the Nonlinear Trans formation (NLT) method in order to set up a fixed Cartesian coordinate system in space. A weightlifter lifted a 90kg-barbell that was 75% of subject's maximum lifting capability (120kg). For this study, six cameras (Qualisys Proreflex MCU240s) and two force-plates (Kistler 9286AAs) were used for collecting data. The motion tracks of 11 land markers were attached on the major joints of the body and barbell. The sampling rates of cameras and force-plates were set up 100Hz and 1000Hz, respectively. Data were processed via the Qualisys Track manager (QTM) software. Landmark positions and force-plate amplitudes were simultaneously integrated by Qualisys system The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 9Hz calculated with Andrew & Yu's formula. The input data of the model were derived from experimental data processed in Matlab6.5 and the solution of a model made in Kane's method was solved in Matematica5.0. The conclusions were as follows; 1. The torque motor of the shank with 246Nm from this experiment could lift a maximum barbell weight (158.98kg) which was about 246 times as much as subject's body weight (64.5kg). 2. The torque motor with 166.5 Nm, simulated by angular displacement of the shank matched to the experimental result, could lift a maximum barbell weight (90kg) which was about 1.4 times as much as subject's body weight (64.5kg). 3. Comparing subject's maximum barbell weight (120kg) with a modeling maximum barbell weight (155.51kg) and with an experimental maximum barbell weight (90kg), the differences between these were about +35.7kg and -30kg. These results strongly suggest that if the maximum barbell weight is decided, coaches will be able to provide further knowledge and information to weightlifters for the performance improvement and then prevent injuries from training of weightlifters. It hopes to apply Kane's method to other sports skill as well as weightlifting to simulate its motion in the future study.

Frequency Characteristics of Anodic Oxide Films on Tantalum

  • Lee, Dong-Nyung;Yoon, yong-Ku
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 1973
  • The Nishitani's equations for impedance of anodic oxide films have been derived based on a p-i-n model under the assumption of $\omega$$\varepsilon$$\rho$$_{ο}$<<4$\pi$<<$\omega$$\varepsilon$$\rho$$_{\omega}$, where $\omega$ is angular frequency, $\varepsilon$ is dielectric constant, and $\rho$$_{ο}$ and $\rho$$_{\omega}$ are the resistivity of the interface region and the intrisic region of the anodic oxide film, respectively. Since it is not possible to evaluate all parameters in the equations, however, any clear physical picture cannot be obtained from the equations. Therefore, the equations are modified under the assumption of $\omega$$\tau$$_{\omega}$>>1 and In(1+$\omega$$^2$$\tau$$_{ο}$$^2$)<<1, where $\tau$$_{\omega}$=$\varepsilon$$\rho$$_{\omega}$(4$\pi$) and $\tau$$_{ο}$=$\varepsilon$$\rho$$_{ο}$/(4$\pi$). The modified equations are then used to explain the change in the frequency characteristics of anodic oxide films when they are heated. The change in impedance of anodic oxide films when they are heated is attributed mainly to the increase in the diffusion layer and to the decrease in the resistivity of anodic oxide films.s.

  • PDF

A Study on Consistency of Numerical Solutions for Wave Equation (파동방정식 수치해의 일관성에 관한 연구)

  • Pyun, Sukjoon;Park, Yunhui
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.136-144
    • /
    • 2016
  • Since seismic inversion is based on the wave equation, it is important to calculate the solution of wave equation exactly. In particular, full waveform inversion would produce reliable results only when the forward modeling is accurately performed because it uses full waveform. When we use finite-difference or finite-element method to solve the wave equation, the convergence of numerical scheme should be guaranteed. Although the general proof of convergence is provided theoretically, the consistency and stability of numerical schemes should be verified for practical applications. The implementation of source function is the most crucial factor for the consistency of modeling schemes. While we have to use the sinc function normalized by grid spacing to correctly describe the Dirac delta function in the finite-difference method, we can simply use the value of basis function, regardless of grid spacing, to implement the Dirac delta function in the finite-element method. If we use frequency-domain wave equation, we need to use a conservative criterion to determine both sampling interval and maximum frequency for the source wavelet generation. In addition, the source wavelet should be attenuated before applying it for modeling in order to make it obey damped wave equation in case of using complex angular frequency. With these conditions satisfied, we can develop reliable inversion algorithms.

Dynamic Analysis and Evaluation of a Microgyroscope using Symmetric 2DOF Planar Resonator (대칭형 2자유도 수평 공진기를 이용한 마이크로 자이로스코프의 동특성 해석 및 평가)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Conventional microgyroscopes of vibrating type require resonant frequency tuning of the driving and sensing modes to achieve high sensitivity. These tuning conditions depend on each fabricated microgyroscopes, even though the microgyroscopes are identically designed. A new micromachined resonator, which is applicable to microgyroscopes with self-toning characteristics, is presented. Since the laterally driven two degrees of freedom (2DOF) resonator was designed as a symmetric structure with identical stiffness in two orthogonal axes, the resonator is applicable to vibrating microgyroscopes, which do not need mode tuning. A dynamic model of the resonator was derived considering gyroscopic application. The dynamic model was evaluated by experimental comparison with fabricated resonators. The microgyroscopes were fabricated using a simple 2-mask-process of a single polysilicon layer deposited on an insulator layer. The feasibility of the resonator as a vibrating microgyroscopes with self-tuning capability is discussed. The fabricated resonators of a particular design have process-induced non-uniformities that cause different resonant frequencies. For several resonators, the standard deviations of the driving and sensing frequencies were as high as 1232Hz and 1214Hz, whereas the experimental average detuning frequency was 91.75Hz. The minimum detuned frequency was 68Hz with $0.034mVsec/^{\circ}$ sensitivity. The sensitivity of the microgyroscopes was low due to process-induced non-uniformity; the angular rate bandwidth, however, was wide. This resonator could be successfully applicable to a vibrating microgyroscopes with high sensitivity, if improvements in uniformity of the fabrication process are achieved. Further developments in improved integrated circuits are expected to lower the noise level even more.

  • PDF

Responses of Artificial Flow-Sensitive Hair for Raider Detection via Bio-Inspiration (침입자 탐지용 인공 유동감지모의 응답 모델링)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.355-364
    • /
    • 2010
  • Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. In these creatures, the filiform hairs function as a sensory system for raider detection. Parametric analyses of the motion response of filiform hairs are conducted by using a mathematical model of an artificial flow sensor to understand the possible operating ranges of a microfabricated device. It is found that the length and diameter of the sensory hair are the major parameters that determine the mechanical sensitivities and responses in a mean flow with an oscillating component. By changing the hair length, the angular displacement, velocity, and acceleration could be detected in a wide range of frequencies. Although the torques due to drag and virtual mass are very small, they are also very influential factors on the hair motion. The resonance frequency of the hair decreases as the length and diameter of the hair increase.

A Numerical Study of the Effects of Design Parameter upon Fan Performance and Noise (원심홴의 설계 변수가 홴의 성능과 소음에 미치는 영향의 수치적 연구)

  • Jeon, Wan-Ho;Lee, Duck-Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.45-51
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise due to the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan and to calculate the effects of rotating velocity, flow rate, cut-off distance and the number of blades and its effects on the noise of the fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated with the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The cut-off distance is the most important factor effecting the noise generation. Acoustic pressure is proportional to 2.8, which shows the same scaling index as the experimental result. In this paper, the cut-off distance is found to be the dominant parameter offecting the acoustic pressure.

  • PDF

Impedance Analysis of DGS Slot in Spectral Domain and Its Application of LPF(Low Pass Filter) (스펙트럴 영역에서 DGS 슬롯 임피던스 특성 해석 및 LPF 응용)

  • Rhee, Seung-Yeop;Kim, On;Chang, Jae-Soo;Go, Jin-Hyun;Ha, Jae-Kwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.418-426
    • /
    • 2008
  • In this paper, investigations on the impedance characteristics of a DGS(Defected Ground Structure) slot in the groud plane of microstripline are presented in spectral domain and applied to the characteristic improvement of stepped impedance microstrip low pass filter(LPF). In this method, expressions for the impedance of a DGS slot are derived from self-reaction of the angular spectrum of plane waves and the discontinuity in the modal voltage. The numerical results are compared with those of the rigorous full-wave method and are shown to produce reasonably accurate data. And the stepped impedance microstrip low pass filter is designed and fabricated with the uniform and nonuniform DGS slots for improving the frequency responses. The experiments show that the proposed filter with slots in the ground plane has a wider stopband and sharper cutoff response.

Development of Inductively Coupled Plasma Gas Ion Source for Focused Ion Beam (유도결합형 플라즈마 소스를 이용한 집속 이온빔용 가스 이온원 개발)

  • Lee, Seung-Hun;Kim, Do-Geun;Kang, Jae-Wook;Kim, Tae-Gon;Min, Byung-Kwon;Kim, Jong-Kuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.19-23
    • /
    • 2011
  • Recently, focused ion beam (FIB) applications have been investigated for the modification of VLSI circuit, the MEMS processing, and the localized ion doping, A multi aperture FIB system has been introduced as the demands of FIB applications for high speed and large area processing increase. A liquid metal ion source has problems, a large angular divergence and a metal contamination into a substrate. In this study, a gas ion source was introduced to replace a liquid metal ion source. The gas ion source generated inductively coupled plasma (ICP) in a quartz tube (diameter: 45 mm). Ar gas fed into the quartz was ionized by a 2 turned radio frequency antenna. The Ar ions were extracted by 2 extraction grids. The maximum extraction voltage was 10 kV. A numerical simulation was used to optimize the design of extraction grids and to predict an ion trajectory. As a result, the maximum ion current density was 38 $mA/cm^2$ and the spread of ion energy was 1.6 % for the extraction voltage.

Data Analysis of Inertial Sensors for Train Positioning Detection System (열차위치검지 시스템을 위한 관성센서 데이터 분석 연구)

  • Kim, Seong Jin;Park, Sungsoo;Lee, Jae-Ho;Kang, Donghoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.