DOI QR코드

DOI QR Code

Responses of Artificial Flow-Sensitive Hair for Raider Detection via Bio-Inspiration

침입자 탐지용 인공 유동감지모의 응답 모델링

  • Park, Byung-Kyu (Institute of Advanced Machinery and Design, Seoul Nat'l Univ.) ;
  • Lee, Joon-Sik (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 박병규 (서울대학교 정밀기계설계공동연구소) ;
  • 이준식 (서울대학교 기계항공공학부)
  • Published : 2010.04.01

Abstract

Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. In these creatures, the filiform hairs function as a sensory system for raider detection. Parametric analyses of the motion response of filiform hairs are conducted by using a mathematical model of an artificial flow sensor to understand the possible operating ranges of a microfabricated device. It is found that the length and diameter of the sensory hair are the major parameters that determine the mechanical sensitivities and responses in a mean flow with an oscillating component. By changing the hair length, the angular displacement, velocity, and acceleration could be detected in a wide range of frequencies. Although the torques due to drag and virtual mass are very small, they are also very influential factors on the hair motion. The resonance frequency of the hair decreases as the length and diameter of the hair increase.

주위 매질의 움직임에 반응하는 섬유상 감지모는 대부분의 생물체에 존재하여 침입자를 감지하는 역할을 한다. 이 기능을 모방한 인공 감지모의 가능한 작동영역 및 응답특성을 파악하기 위하여 인공유동센서의 수학 모델에 대한 매개변수 해석을 수행하고, 각 변수들의 영향을 고찰하였다. 진동성분을 갖는 복합 공기 유동장에서 감지모의 길이 및 직경이 기계적인 감도와 주파수 응답을 결정하는 주요 인자인 것으로 나타났다. 감지모의 길이에 따라 각속도, 각속도, 각가속도를 감지할 수 있는 주파수 영역이 달라질 수 있는 것으로 나타났다. 또한 항력 및 가상 질량에 의한 토크가 매우 작지만 감지모의 움직임에 매우 큰 영향을 나타냈다. 감지모의 길이 및 직경이 증가함에 따라 공진 주파수는 감소하는 것으로 나타났다.

Keywords

References

  1. Nguyen, N. T., 2006, Fundamentals and Applications of Microfluidics, Artech House.
  2. Shimozawa, T., Kumagai, T. and Baba, Y., 1998, "Structural Scaling and Functional Design of the Cercal Wind-Receptor Hairs of a Cricket," J. Comp. Physiol., A, Vol. 183, No. 2, pp. 171-186. https://doi.org/10.1007/s003590050245
  3. Barth, F. G., Humphrey, J. A. C. and Secomb, T. W., 2003, Sensors and Sensing in Biology and Engineering, Springer-Verlag.
  4. Bathellier, B., Barth, F. G., Albert, J. T. and Humphrey, J. A. C., 2005, Viscosity-Mediated Motion Coupling Between Pairs of Trichobothria on the Leg of the Spider Cupiennius Salei, J. Comp. Physiol. A, Vol. 191, pp. 733-746. https://doi.org/10.1007/s00359-005-0629-5
  5. Barth, F. G., Wastl, U., Humphrey, J. A. C., and Devarakonda, R., 1993, "Dynamics of aRthropod Filiform Hairs II. Mechanical Properties of Spider Trichobothria," Philos. Trans., Biol. Sci., Vol. 340, No. 1294, pp. 445-461. https://doi.org/10.1098/rstb.1993.0084
  6. Chen, N., Tucker, C., Engel, J., M., Yang, Y., Pandya, S., and Liu, C., 2007, Design and Characterization of Artificial Haircell Sensors for Flow Sensing with Ultrahigh Velocity and Angular Sensitivity, J. of MEMS, Vol. 16, No. 5, pp. 999-1014. https://doi.org/10.1109/JMEMS.2007.902436
  7. Krijnen, G. J. M., Dijkstra, M., van Baar J. J., Shankar, S. S., Kuipers, W. J., de Boer, R. J. H., Altpeter, D., Lammerink, T. S. J., and Wiegerink, R., 2006, MEMS Based Hair Flow-Sensors as Model Systems for Acoustic Perception Studies, Nanotechnology, Vol. 17, S84-89. https://doi.org/10.1088/0957-4484/17/4/013
  8. Humphrey, J. A. C., Devarakonda, R., Iglesias, I., and Barth, F. G., 1993, "Dynamics of Arthropod Filiform Hairs. I. Mathematical Modeling of the Hair and Air Motions," Philos. Trans. Roy. Soc. Lond., Vol. B340, pp. 423-444.
  9. Barth, F. G., Humphrey, J. A. C., and Voss, K., 2001, "The Motion Sensing Hairs Of Arthropods: Using Physics to Understand Sensory Ecology And Adaptive Evolution," Ecology of Sensing, F. G. Barth and A. Schmid, Eds., Springer-Verlag.
  10. Newman, J. N., 1977, Marine Hydrodynamics, MIT Press.
  11. Kim, C-.J., 2007, An Introduction to the Numerical Analysis, 3rd ed., Pan Korea Book Corporation.
  12. Casas, J., and Simpson, S. J., 2008, Advances in Insect Physiology - Insect Mechanics and Control, Vol. 34, Elsevier.
  13. Barth, F. G., Humphrey, J. A. C., Wastl, U., Halbritter, J. and Brittinger, W., 1995, "Dynamics of Arthropod Filiform Hairs III. Flow Patterns Related to Air Movement Detection in a Spider," Philos. Trans. R. Soc. London, Vol. 347, pp. 397-412. https://doi.org/10.1098/rstb.1995.0032
  14. Park, B. K. and Lee, J. S., 2009, "Measurements of Thermal Characteristics for a Micro-Fabricated Thermal Mass Air Flow Sensor with Real-Time Controller," Transactions of the KSME B, Vol. 33, No. 8, pp. 573-579. https://doi.org/10.3795/KSME-B.2009.33.8.573
  15. Harley, J. A. and Kenny, T.W., 2000, "1/F Noise Considerations for the Design and Process Optimization Of Piezoresistive Cantilevers," J. MEMS, Vol. 9, No. 2, pp. 226-235. https://doi.org/10.1109/84.846703
  16. Park, B. K. and Lee, J. S., 2008, "Microfabrication and Thermal Characteristics of a Thermal Mass Air Flow Sensor for Real-Time Applications," Transactions of the KSME B, Vol. 32, No. 7, pp. 542-548.
  17. Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., and Vettiger, P., 1997, "SU-8: A Low-Cost Negative Resist for MEMS," J. Micromech. Microeng., Vol.7, No.3, pp. 121-124. https://doi.org/10.1088/0960-1317/7/3/010
  18. Yu, X., Thaysen, J., Hansen, O., and Boisen, A., 2002, "Optimization of Sensitivity and Noise in Piezoresistive Cantilevers," J. Appl. Phys., Vol. 92, No.10, pp. 6296-6301. https://doi.org/10.1063/1.1493660
  19. Kumagai, T., Shimozawa, T., and Baba, Y., 1998, "The Shape of Wind-Receptor Hairs of Cricket and Cockroach," J. Comp. Physiol. A, vol. 183, No. 2, pp. 187-192. https://doi.org/10.1007/s003590050246
  20. Bhusan, B., 2009, "Biomimetics: Lessons from Nature - an Overview," Philos. Trans. Roy. Soc., Mathematical, Physical, & Engineering Sciences, Vol. A367, pp. 1445-1486.
  21. Telionis, D. P., 1981, Unsteady Viscous Flows, Springer-Verlag.
  22. Barth, F. G., 2004, "Spider Mechanoreceptors," Curr. Opin. Neurobiology, Vol. 14, pp. 415-422. https://doi.org/10.1016/j.conb.2004.07.005