• Title/Summary/Keyword: angular distribution

Search Result 343, Processing Time 0.026 seconds

A comparative study between stress concentration factor of the infinite plate with elliptic hole and presuure coefficient of the potential flow around elliptic cylinder (추원공을 가진 무한평판의 응력집중계수와 추원주를 가진 Potential Flow 의 응력계수와 비교연구)

  • ;;Yoon, Kab Young
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.354-361
    • /
    • 1981
  • This study aims to compare stress concentratior factors in a loaded elastic body of the infinite plate with pressure coefficients of a fluid in the potential flow. First in view of hydrodynamics, when a single elliptic cylinder in the form of a bluff body stands in the potential flow, the pressure distribution(doefficient, C$\_$p/around the elliptic cylicder which is changed according to the position(angular displacements)is theoretically analyzed and calulated; secondly, in view of theory of elasticity, when an eliptic hole which is made on a flat plate gets tension, the stress distribution(factor) around the elliptic hole which is changed according to the position(angular displacements )is theoretically(K$\_$t/) and experimentally (K$\_$e/) measured; and finally. The results are compard and examined.

Analysis of Aluminum Powder Densification by Continuous Front Extrusion-Equal Channel Angular Pressing (등통로각압축이 결합된 압출 공정에 의한 알루미늄 분말의 치밀화 거동)

  • Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.204-209
    • /
    • 2008
  • Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at $200^{\circ}C$. Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.

Shell Candidates from I-GALFA HI Survey

  • Park, Geum-Sook;Koo, Bon-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.68.2-68.2
    • /
    • 2010
  • Diffuse interstellar atomic hydrogen (HI) gases are easily shaped into shell-like features by energetic processes such as stellar winds and supernova explosions. The physical characteristics and the Galactic distribution of HI shells and shell-like structures, therefore, are closely related to those of the energy sources. Recently, Inner-Galaxy Arecibo L-band Feed Array (I-GALFA) low-latitude HI survey has been completed. I-GALFA HI survey covers the central part of the first quadrant ($31^{\circ}{\lesssim}1{\lesssim}77^{\circ}$ at b = $0^{\circ}$, ${\mid}b{\mid}\lesssim\;12^{\circ}$) with spatial and velocity resolutions of 3.35′and 0.184 km/s, respectively. The high-angular and high-velocity resolutions enable in-depth investigation of HI shells including the ones of smaller angular sizes. We have found 36 shell candidates with the naked eye. Their angular sizes are distributed from $\sim0.4^{\circ}$ to $\sim12^{\circ}$. About sixteen of them appear to be expanding. We examine associated features at other wavebands and discuss their origin.

  • PDF

Real-Time Compensation of Errors Caused by the Flux Density Non-uniformity for a Magnetically Suspended Sensitive Gyroscope

  • Chaojun, Xin;Yuanwen, Cai;Yuan, Ren;Yahong, Fan;Yongzhi, Su
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by the non-uniformity of the air-gap flux density in a MSSG, this paper proposes a novel compensation method based on measuring and modeling of the air-gap flux density. The angular velocity measurement principle and the structure of the MSSG are described, and then the characteristic of the air-gap flux density has been analyzed in detail. Next, to compensate the flux density distribution error and improve the measurement accuracy of the MSSG, a real-time compensation method based on the online measurement with hall probes is designed. The common issues caused by the non-uniformity of the air-gap flux density can be effectively resolved by the proposed method in high-precision magnetically suspended configurations. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

Effect of internal angles between limbs of cross plan shaped tall building under wind load

  • Kumar, Debasish;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.95-118
    • /
    • 2017
  • The present study revealed comparison the pressure distribution on the surfaces of regular cross plan shaped building with angular cross plan shaped building which is being transformed from basic cross plan shaped building through the variation of internal angles between limbs by $15^{\circ}$ for various wind incidence angle from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. In order to maintain the area same the limbs sizes are slightly increased accordingly. Numerical analysis has been carried out to generate similar nature of flow condition as per IS: 875 (Part -III):1987 (a mean wind velocity of 10 m/s) by using computational fluid dynamics (CFD) with help of ANSYS CFX ($k-{\varepsilon}$ model). The variation of mean pressure coefficients, pressure distribution over the surface, flow pattern and force coefficient are evaluated for each cases and represented graphically to understand extent of nonconformities due to such angular modifications in plan. Finally regular cross shaped building results are compared with wind tunnel results obtained from similar '+' shaped building study with similar flow condition. Reduction in along wind force coefficients for angular crossed shaped building, observed for various skew angles leads to develop lesser along wind force on building compared to regular crossed shaped building and square plan shaped building. Interference effect within the internal faces are observed in particular faces of building for both cases, considerably. Significant deviation is noticed in wind induced responses for angular cross building compared to regular cross shaped building for different direction wind flow.

An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions (판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding process, mostly from viewpoint of residual stresses. In this study, the temperature distribution, transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer analysis was first performed by taking account of the temperature-dependent material properties and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses and distortion analysis that incorporates the constrained boundary condition of the two dimensional solution domain to get the three dimensional size effect of the plate. The constrained boundary conditions adopted in this study were the constant displacement condition over the whole two dimensional section for axial movement in the welding direction, and the force boundary condition for rotational movementof the domain around the axis of the welding direction. It could be revealed that the theoretical predictions of the angular distortion have an improved agreement with the experimentally obtained data presented in the previous study.

  • PDF

Centrifugal Infiltration Process of Fibrous Tubular Preform by Al-Cu Alloy

  • Li, Yanhong;Wang, Kai;Su, Yongkang;Hu, Guoxin
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.381-394
    • /
    • 2009
  • The kinetics of centrifugal infiltration of fibrous tubular preform is built theoretically, and simulations are conducted to study the effects of various casting conditions on infiltration kinetics and macrosegregation by combining with the energy, mass and kinetic equations. A similarity way is used to simplify the one-dimensional model and the parameter is ascertained by an iterative method. The results indicate that the increase of superheat, initial preform temperature, porosity tends to enlarge the remelting region and decrease copper solute concentration at the infiltration front. Higher angular velocity leads to smaller remelting region and solute concentration at the tip. The pressure in the infiltrated region increase significantly when the angular velocity is much higher, which requires a stronger preform. It is observed that the pressure distribution is mainly determined by the angular velocity, and the macrosegregation in the centrifugal casting is greatly dependent on the superheat of inlet metal matrix, initial temperature and porosity of the preform, and the angular velocity.