• Title/Summary/Keyword: angle

Search Result 24,642, Processing Time 0.047 seconds

A STUDY ON POSITIONAL CHANCE OF THE HYOID BONE BEFORE AND AFTER ACTIVATOR THERAPY IN ANGLE'S CLASS III MALOCCLUSION PATIENTS (Angle씨 III급 부정교합 환자중 Activator사용 전후의 설골의 위치 변화에 관한 연구)

  • Koh, Sang-Duk;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.827-839
    • /
    • 1994
  • This study was conducted to assess the positional changes of hyoid bone following the use of activator in Angles class III malocclusion patients with functional factors. For this study, 40 Angle's class I patients and 40 Angle's class III patients, totally 80 subjects were used. They are all in Hellman's dental age IIIB-IIIC ranges. In lateral cephalogram to compare Angle's class I group and Angle's class III group, and the positional changes of the hyoid bone before and after the use of activator in Angle's class III malocclusion group. The results were obtained as follows; 1. Comparison of Angle's class I group and Angle's class III group. In comparison to Angle's class I group, hyoid bone is more anteriorly and superiorly positioned in Angle's class III group. The hyoid bone showed reverse inclination to the mandibular plane in Angle's class III malocclusion group. 2. Comparison of the hyoid positional change before and after use of Activator in Angle's class III malocclusion group. The hyoid bone is displaced posteriorly and inferiorly in vertical relationship. The hyoid bone also showed counter-clockwise rotation. 3. No statistical difference was found between after Activator use data of Angle's class m malocclusion group and Angle's class I group. It is concluded that the hyoid bone in Angle's class III malocclusion group changed its position, similar to Angle's class I malocclusion group.

  • PDF

Analysis of Static Stability by Modified Mathematical Model for Asymmetric Tractor-Harvester System: Changes in Lateral Overturning Angle by Movement of Center of Gravity Coordinates

  • Choi, Kyu-hong;Kim, Seong-Min;Hong, Sungha
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.127-135
    • /
    • 2017
  • Purpose: Purpose: The usability of a mathematical model modified for analysis of the static stability of an asymmetric tractor-harvester system was investigated. Method: The modified asynchronous mathematical model was validated through empirical experiments, and the effects of movements of the center of gravity (CG) coordinates on the stability against lateral overturning were analyzed through simulations. Results: Changes in the lateral overturning angle of the system were investigated when the coordinates of the CG of the system were moved within the variable range. The errors between simulation results and empirical experiments were compared, and the results were -4.7% at the left side overturning and -0.1% at the right side overturning. The asymmetric system was characterized in such a way that the right side overturning had an increase in overturning angle in the (+) variable range, while it had a decrease in overturning angle in the (-) variable range. In addition, the left side overturning showed an opposite result to that of the right side. At the declination angle (296<${\gamma}$<76), the right side overturning had an increase in the maximum overturning angle of 3.6%, in the minimum overturning angle of 20.3%, and in the mean overturning angle of 15.9%. Furthermore, at the declination angle (284<${\gamma}$<64), the left side overturning had a decrease in the maximum overturning angle of 29.2%, in the minimum overturning angle of 44%, and in a mean overturning angle of 39.7%. Conclusion: The modified mathematical model was useful for predicting the overturning angle of the asymmetric tractor-harvester system, and verified that a movement of the CG coordinates had a critical effect on its stability. In particular, the left side overturning was the most vulnerable to stability, regardless of the direction of declination angle.

The Effect of Drill Helix Angle, Point angle, and Cutting Conditions on the Drilling Performance (드릴의 선단각, 나선각 및 가공조건이 가공성에 미치는 영향)

  • 이영식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.138-146
    • /
    • 1997
  • The optimal drill helix angle, point angle, and cutting conditions are recommended in the study so as to maximize the drilling performance by investigating the experimental reaults concerning with the state of chip formation, roundness of machined holes, and geometry of projected burr at hole exit, which are examined under the conditions of various helix angles, drill point angles of twist drill, cutting speeds, and feeds in operional parameters. In the easiness of chip escape, the helical type of chip is producted when a helix angle is 30$^{\circ}$, drill point angle 118$^{\circ}$, 140$^{\circ}$and feed is st between 0.1 and 0.15mm/rev. Roundness of machined hole is improved when the helix angle is 37$^{\circ}$, drill point angle is 118$^{\circ}$, and feed is 0.15mm/rev. The height of projected burr at the button of machined hole increases when the drill point angle and helix angle becomes large.

  • PDF

Comparing the Installing Angle Rafter of China.Japan and Korea (중국.일본과 우리나라의 추녀설치방식의 비교 연구)

  • Hong, Byung-Hwa
    • Journal of architectural history
    • /
    • v.21 no.2
    • /
    • pp.21-36
    • /
    • 2012
  • As wooden construction developed, it was observed that the rafters with corners changed to angled rafters. The change from rafters to angle rafters means that the angle rafters became the most important member in supporting the roof weight as the construction scale increased and structurally developed. The specific installation methods of angle rafters were all unique in Korea, China, and Japan. In East Asia, the angle of the angle rafter gradually decreased along with the development of construction. However, in Joseon Dynasty Korea, the angle of the angle rafter was larger than that of the Gorye era because the method of fixing the corner of the roof more firmly by building the fan-shaped rafter was utilized. The changes to the angle rafter installation method is a unique characteristic of Korea, in that it was developed in a totally different way from the methods used in China and Japan.

Analysis of the Dimensionless Torque in Cone Drum False Twisting Mechanism

  • Lee, Choon-Gil;Kang, Tae-Jin
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.161-168
    • /
    • 2003
  • An investigation of the dimensionless torque in the newly developed cone drum twister texturing mechanism is reported. The cone drum twister is one of the outer surface contacting friction-twisting devices in false-twist texturing. In this cone drum twister, a filament yam passes over the surface of the cone drum that rotates by the passing yarn without a special driving device. This research is composed of the theoretical analysis of the false twisting mechanism and the experimental analysis at room temperature. The equations have been derived which shows interrelationship of the conical angle of cone drum, the wrapping angle, the drag angle, and the yam helix angle. Theoretical values of dimensionless torque were calculated and were compared with the experimental results. It is shown that, as the conical angle and the projected wrapping angle increased, the dimensionless torque also increased. But the conical angle was reached to ${30.75}^{\circ}C$, the dimensionless torque decreased.

Voltage Angle Control of an IPMSM for Electric Vehicle Drives (전기자동차 구동을 위한 IPMSM의 전압각 제어)

  • Ko, Tae-Hoon;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.397-403
    • /
    • 2017
  • This paper studies the voltage angle control of interior permanent magnet synchronous motors (IPMSMs). For voltage angle control, the optimum voltage angle trajectory according to the operating speed is researched while the voltage and current limit conditions are considered. Through research, two different optimum voltage angle trajectories that depend on the design of IPMSMs were found. The IPMSM drive based on a voltage angle control that follows such trajectory is proposed. Unlike the conventional voltage angle control method, which is applied only in the flux-weakening region, the proposed voltage angle control can be implemented in all operation ranges from low to high speed. The proposed method is verified by experiments using a DSC controller for 800 W IPMSM.

Power Consumption and Viewing Angle Characteristics Dependent on Liquid Crystal's Twist Angle in Reflective Twisted Nematic Mode (반사형 TN mode의 Twist angle에 따른 소비전력과 시야각 특성)

  • 송제훈;정태봉;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.207-211
    • /
    • 2004
  • We have performed computer simulation to obtain a globa1 optimization of power consumption and viewing angle characteristic of reflective twisted nematic (R-TN) mode liquid crystal display (LCD) with sin81e polarizer and λ/4 plate. Our studies shout that with increasing the twist angle, a steepness of reflectance-voltage curve increase, operation voltages decreases, the region where contrast ratio (CR) greater than 10 increases but the reflectance of the white state starts to decrease at above the twist angle of 75$^{\circ}$. Above the twist angle of 90$^{\circ}$, the R-TN mode LCD shows the most favorable combination of low consumption and good viewing angle characteristic.

Development of a Ground Speed Monitoring System for Aerial Application (항공방제용 지면속도 감시장치의 개발)

  • 구영모;알빈워맥
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.233-240
    • /
    • 2000
  • A commercially available Doppler radar was modified and evaluated for on-board monitoring of ground speed. The radar output was corrected for pitch angle of aircraft based on the output of an electrolytic tilt sensor. The effects of aircraft speed, height and mounting angle on error in the ground speed were evaluated. The speed error decreased with an increase of the mounting angle since the radar contact angle with respect to the ground approached to the mounting angle. The error increased with an increase of the nominal aircraft speed. The altitude insignificantly affected the speed error. The Doppler radar provided acceptable percent errors within 5% in most measurements. The error can be reduced within ${\pm}$1.5% by increasing the mounting angle ($43^{\circ}$). The error of -3.8% at the mounting angle of $29^{\circ}$could be reduced by adjusting the mounting angle with respect to the radar contact angle.

  • PDF

Kill Probability Analysis Based on the Relation between Final Angle of Attack and Impact Angle of a Guided Anti-tank Missile (대전차유도무기의 종말 받음각 및 입사각의 상관관계에 의한 표적 파괴율 분석)

  • Jeong, Dong-Gil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.520-527
    • /
    • 2010
  • The kill probability of a missile depends on guidance error, warhead performance, and etc. In this paper, we analyzed the kill probability of anti-tank missile in a new approach. Under the condition that the missile hit the target, we studied the effect of angle of attack and impact angle. High impact angle increase the probability that the missile hits the upper armour which is relatively weaker, while high angle of attack at the impact instant decreases the effectiveness of the jet induced by the warhead. We proposed a way to increase the capability of penetration by analyzing the interrelation between impact angle and angle of attack.

Pressure Distribution in Stump/Socket Interface in Response to Socket Flexion Angle Changes in Trans-Tibial Prostheses With Silicone Liner

  • Kang, Pil;Kim, Jang-Hwan;Roh, Jung-Suk
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.71-78
    • /
    • 2006
  • This study examined the effects of socket flexion angle in trans-tibial prosthesis on stump/socket interface pressure. Ten trans-tibial amputees voluntarily participated in this study. F-socket system was used to measure static and dynamic pressure in stump/socket interface. The pressure was measured at anterior area (proximal, middle, and distal) and posterior area (proximal, middle, and distal) in different socket flexion angles ($5^{\circ}$, $0^{\circ}$, and $10^{\circ}$). Paired t-test was used to compare pressure differences in conventional socket flexion angle of $5^{\circ}$ with pressures in socket flexion angles of $0^{\circ}$ and $10^{\circ}$ (${\alpha}$=.05). Mean pressure during standing in socket flexion angle of $10^{\circ}$ decreased significantly in anterior middle area (19.7%), posterior proximal area (10.4%), and posterior distal area (16.3%) compared with socket flexion angle of $5^{\circ}$. Mean pressure during stance phase in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (19.3%) and decreased significantly in anterior distal area (19.7%) compared with socket flexion angle of $5^{\circ}$. Mean pressure during stance phase in socket flexion angle of $10^{\circ}$ decreased significantly in anterior proximal area (19.6%) and increased significantly in anterior distal area (8.2%) compared with socket flexion angle of $5^{\circ}$. Peak pressure during gait in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (23.0%) compared with socket flexion angle of $5^{\circ}$ and peak pressure during gait in socket flexion angle of $10^{\circ}$ decreased significantly in anterior proximal area (22.7%) compared with socket flexion angle of $5^{\circ}$. Mean pressure over 80% of peak pressure ($MP_{80+}$) during gait in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (23.9%) and decreased significantly in anterior distal area (22.5%) compared with socket flexion angle of $5^{\circ}$. $MP_{80+}$ during gait in socket flexion angle of $10^{\circ}$ decreased significantly in anterior distal area (34.1%) compared with socket flexion angle of $5^{\circ}$. Asymmetrical pressure change patterns in socket flexion angle of $0^{\circ}$ and $10^{\circ}$ were revealed in anterior proximal and distal region compared with socket flexion angle of $5^{\circ}$. To provide comfortable and safe socket for trans-tibial amputee, socket flexion angle must be considered.

  • PDF