• Title/Summary/Keyword: angiogenesis inhibitors

Search Result 71, Processing Time 0.026 seconds

Gelastatins, New Inhibitors of Matrix Metalloproteinases from Westerdykella multispora F50733

  • Lee, Ho-Jae;Chung, Myung-Chul;Lee, Choong-Hwan;Chun, Hyo-Kon;Rhee, Joon-Shick;Kho, Yung-Hee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.128-128
    • /
    • 1998
  • Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteases that degrade extracellular matrix and basement membrane. These enzymes are play important roles in tumor cell invasion and metastasis, as well as angiogenesis and other connective tissue diseases. In our screening program for inhibitors of MMP-2 from fungal metabolites, we have isolated novel non-peptidic inhibitors of MMPs, designated gelastatin A and B from the culture broth of Westerdykella multispora F50733. The structures of gelastatin A and B were determined to be 3-(5E-hexa-2E,4E-dienylidene-2-oxo-5,6-dihydro-2H-pyran-3yl)-propanoic acid and 3-(5Z-hexa-2E,4E-dienylidene-2-oxo-5,6-dihydro-2H-pyran-3yl)-propanoic acid, respectively. Gelastatin A and B exist as a mixture of two stereoisomers in a ratio of 2: 1. The 2: 1 mixture of gelastatin A and B inhibited activated MMP-2 and MMP-9 with an IC$\sub$50/ value of 0.63, 5.29 ${\mu}$M, respectively. They inhibited the invasion of B16F10 melanoma cells through basement membrane Matrigel with dose dependent.

  • PDF

Effect of PPARα activator and exercise on angiogenesis of white adipose tissue in high fat diet fed mice (고지방 사료를 섭취한 쥐에서 백색지방조직의 혈관신생에 대한 PPARα activator와 운동의 영향 )

  • Sun-Hyo Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.925-935
    • /
    • 2023
  • It was investigated whether PPARα activator more effectively inhibits angiogenesis of white adipose tissue in exercise mice that ate high fat diet compared to non-exercise mice that ate high fat diet. Male mice were randomly divided into a control group not treated with a PPARα activator fenofibrate and exercise (Con), a group treated with fenofibrate alone (FF), a group treated with exercise alone (Ex), and a group treated with a combination of fenofibrate and exercise (Ex+FF). (Ex+FF). All mice was fed high-fat diet for 8 weeks. The weight of white adipose tissue and the size of white adipocytes decreased in FF, Ex, and Ex+FF compared to Con, and decreased more in Ex+FF Ex+FF compared to FF. In white adipose tissue, the gene expression of MMPs and angiogenic factors decreased in FF, Ex, and Ex+FF compared to Con, and more decreased in Ex+FF compared to FF. On the other hand, gene expression of angiogenic inhibitors increased in FF, Ex and Ex+FF compared to Con, and increased more in Ex+FF compared to FF. Therefore, this study revealed that the combined treatment of fenofibrate and exercise effectively inhibits the angiogenesis of white adipose tissue, reducing the increase in white adipose tissue and suppressing abdominal obesity, rather than the single treatment of fenofibrate.

The Molecular Insight into the Vascular Endothelial Growth Factor in Cancer: Angiogenesis and Metastasis (암의 혈관내피 성장인자에 대한 분자적 통찰: 혈관신생과 전이)

  • Han Na Lee;Chae Eun Seo;Mi Suk Jeong;Se Bok Jang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.128-137
    • /
    • 2024
  • This review discusses the pivotal role of vascular endothelial growth factors (VEGF) in angiogenesis and lymphangiogenesis, vital processes influencing vascular permeability, endothelial cell recruitment, and the maintenance of tumor-associated blood and lymphatic vessels. VEGF exerts its effects through tyrosine-kinase receptors, VEGFR-1, VEGFR-2, and VEGFR-3. This VEGF-VEGFR system is central not only to cancer but also to diseases arising from abnormal blood vessel and lymphatic vessel formation. In the context of cancer, VEGF and its receptors are essential for the development of tumor-associated vessels, making them attractive targets for therapeutic intervention. Various approaches, such as anti-VEGF antibodies, receptor antagonists, and VEGF receptor function inhibitors, are being explored to interfere with tumor growth. However, the clinical efficacy of anti-angiogenic agents remains uncertain and necessitates further refinement. The article also highlights the physiological role of VEGFs, emphasizing their involvement in endothelial cell functions, survival, and vascular permeability. The identification of five distinct VEGFs in humans (VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PLGF) is discussed, along with the classification of VEGFRs as typical receptor tyrosine kinases with distinct signaling systems. The family includes VEGFR-1 and VEGFR-2, crucial in tumor biology and angiogenesis, and VEGFR-3, specifically involved in lymphangiogenesis. Overall, this review has provided a comprehensive overview of VEGF and VEGFR, detailing their roles in various diseases, including cancer. This is expected to further facilitate the utilization of VEGF and VEGFR as therapeutic targets.

Farnesyl Protein Transferase Inhibitory Components of Lithospermum erythrorhizon

  • Kim, Seong-Jin;Kwon, Byoung-Mog;Kim, Sung-Hoon;Baek, Nam-In;Yang, Jae-Heon;Lee, Jeong-Joo;Lee, Sa-Im;Kwon, Young-Ee;Park, Hee-Wook;Lee, Jae-Hyeok;Park, Jeong-Suk;Kim, Dae-Keun
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.328-331
    • /
    • 2007
  • The methanolic extract of the roots of Lithospermum erythrorhizon (Boraginaceae) was found to show inhibitory activity towards farnesyl protein transferase (FPTase). Bioassay-guided fractionation of the methanolic extract resulted in the isolation of three naphthoquinone compounds, as inhibitors of FPTase. These compounds inhibited the FPTase activity in a dose-dependent manner.

RNA Binding Protein as an Emerging Therapeutic Target for Cancer Prevention and Treatment

  • Hong, Suntaek
    • Journal of Cancer Prevention
    • /
    • v.22 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • After transcription, RNAs are always associated with RNA binding proteins (RBPs) to perform biological activities. RBPs can interact with target RNAs in sequence- and structure-dependent manner through their unique RNA binding domains. In development and progression of carcinogenesis, RBPs are aberrantly dysregulated in many human cancers with various mechanisms, such as genetic alteration, epigenetic change, noncoding RNA-mediated regulation, and post-translational modifications. Upon deregulation in cancers, RBPs influence every step in the development and progression of cancer, including sustained cell proliferation, evasion of apoptosis, avoiding immune surveillance, inducing angiogenesis, and activating metastasis. To develop therapeutic strategies targeting RBPs, RNA interference-based oligonucleotides or small molecule inhibitors have been screened based on reduced RBP-RNA interaction and changed level of target RNAs. Identification of binding RNAs with high-throughput techniques and integral analysis of multiple datasets will help us develop new therapeutic drugs or prognostic biomarkers for human cancers.

Highlighted STAT3 as a potential drug target for cancer therapy

  • Lee, Haeri;Jeong, Ae Jin;Ye, Sang-Kyu
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.415-423
    • /
    • 2019
  • Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immune responses. Aberrant STAT3 activation triggers tumor progression through oncogenic gene expression in numerous human cancers, leading to promote tumor malignancy. On the contrary, STAT3 activation in immune cells cause elevation of immunosuppressive factors. Accumulating evidence suggests that the tumor microenvironment closely interacts with the STAT3 signaling pathway. So, targeting STAT3 may improve tumor progression, and anti-cancer immune response. In this review, we summarized the role of STAT3 in cancer and the tumor microenvironment, and present inhibitors of STAT3 signaling cascades.

The altered $Na^+,\;K^+$-pump activity following the fumonisin exposure to LLC-PKl cells

  • Choi, Heon-Kyo;Yoo, Jae-Myung;Tudev, Munkhtsetseg;Lee, Yong-Moon;Yun, Yeo-Pyo;Yoo, Hwan-Soo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.110.1-110.1
    • /
    • 2003
  • Fumonisins are specific inhibitors of ceramide synthase in sphingolipid metabolism. Sphingolipids are biologically active lipid mediators in cellular physiology and involved in cell signaling, growth, transformation, angiogenesis and differentiation. The objective of this study was to determine the effect of fumonisin B1 on $Na^+, \;K^+$-pump activity when fumonisin B1 was exposed to LLC-PK1 cells. Fumonisin B1 elevated free sphingoid bases and their 1-phosphates, while total complex sphingolipids were depleted at 20$\mu$M fumonisin B1 during the 3 day exposure. (omitted)

  • PDF

THE EFFECTS OF INSULIN-LIKE GROWTH FACTOR I (IGF-I) ON EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF) MRNA IN MG-63 OSTEOBLASTLIKE CELLS (MG-63 세포주에서 Vascular Endothelial Growth Factor (VEGF) mRNA 발현에 대한 Insulin-like Growth Factor I (IGF-I)의 효과에 대한 연구)

  • Suh, Je-Duck;Myung, Hoon;Kang, Nara;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.363-369
    • /
    • 2005
  • Purpose: To determine the role of Insulin-like Growth Factor-I (IGF-I) in the regulation of Vascular Endothelial Growth Factor (VEGF) expression in MG-63 cells and then to find the mechanism b which this regulation occurs. Materials and methods: MG-63 cells were grown to confluence in 60-mm dishes. To determine the effects of IGF-I on expression of VEGF mRNA according to time and concentration, the cells were treated with 10 nM IGF-I, following isolation of total RNA and Northern blot analysis after 1, 2, 4, 8, 12, 24 hours and after 2 hours of treatment with 0.5, 2, 10, 25, 50 nM IGF-I respectively, isolation of total RNA and Northern blot analysis were followed. To determine the mechanism of action of IGF-I, inhibitors such as hydroxyurea $(76.1\;{\mu}g/ml)$, actinomycin D $(2.5\;{\mu}g/ml)$, cycloheximide $(10\;{\mu}g/ml)$ were added 1 hour after treatment of 10 nM IGF-I. Results: 1. the expression of VEGF mRNA was increased with treatment of IGF-I. 2. The expression of VEGF mRNA was increased according to time-and concentration dependent manner of IGF-I. 3. The effect of IGF-I was decreased by hydroxyuera, actinomycin D, but not by cycloheximide. Conclusion: IGF-I regulate the expression of VEGF mRNA in the level of DNA synthesis and transcription. These results could suggest that IGF-I plays an important role in angiogenesis in the process of new bone formation and remodeling.

Soluble Expression and Purification of the Catalytic Domain of Human Vascular Endothelial Growth Factor Receptor 2 in Escherichia coli

  • Wei, Jia;Cao, Xiaodan;Zhou, Shengmin;Chen, Chao;Yu, Haijun;Zhou, Yao;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1227-1233
    • /
    • 2015
  • Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis through binding to its specific receptors, which mainly occurs to VEGF receptor 2 (VEGFR-2), a kinase insert domain-containing receptor. Therefore, the disruption of VEGFR-2 signaling provides a promising therapeutic approach for the treatment of cancer by inhibiting abnormal or tumorinduced angiogenesis. To explore this potential, we expressed the catalytic domain of VEGFR-2 (VEGFR-2-CD) as a soluble active kinase in Escherichia coli. The recombinant protein was purified and the VEGFR-2-CD activity was investigated. The obtained VEGFR-2-CD showed autophosphorylation activity and phosphate transfer activity comparable to the commercial enzyme. Furthermore, the IC50 value of known VEGFR-2 inhibitor was determined using the purified VEGFR-2-CD. These results indicated a possibility for functional and economical VEGFR-2-CD expression in E. coli to use for inhibitor screening.

Role of Protein Kinase C in Abnormal Proliferation of Vascular Endothelial Cell induced by 1,2-Dimethylhydrazine; Analysis of Isoform (디메틸히드라진(1,2-Dimethylhydrazine)으로 유도된 혈관내피세포의 비정상적인 증식에서 단백활성효소 시이(Protein Kinase C)의 역할; 동종효소 분석)

  • Lee, Jin;Bae, Yong Chan;Park, Suk Young;Moon, Jae Sul;Nam, Su Bong
    • Archives of Plastic Surgery
    • /
    • v.34 no.1
    • /
    • pp.8-12
    • /
    • 2007
  • Purpose: Protein tyrosine kinase(PTK), protein kinase C(PKC), oxidase, as a mediator, have been known to take a role in signal transduction pathway of angiogenesis. The authors confirmed that PKC is the most noticeable mediator for abnormal proliferation of vascular endothelial cells through in vitro study model using the inhibitors, targeting the formation of three co-enzymes. In this study, we would investigate which isoform of PKC play an important role in abnormal angiogenesis of vascular endothelial cell. Methods: In 96 well plates, $10^4$ HUVECs(human umbilical vein endothelial cells) were evenly distributed. Two groups were established; the control group without administration of DMH(1,2-dimethylhydrazine) and the DMH group with administration of $7.5{\times}10^{-9}M$ DMH. RNA was extracted from vascular endothelial cell of each group and expression of the PKC isoform was analyzed by RT-PCR(reverse transcriptase-polymerase chain reaction) method. Results: RT-PCR analysis showed that $PKC{\alpha}$, $-{\beta}I$, $-{\beta}II$, $-{\eta}$, $-{\mu}$ and $-{\iota}$ were expressed in vascular endothelial cells of each group. DMH incresed the expression of $PKC{\alpha}$ and $PKC{\mu}$, and decreased $PKC{\beta}I$, $PKC{\beta}II$ expression dominantly. Conclusion: Based on the result of this study, it was suggested that $PKC{\alpha}$ and $PKC{\mu}$ may have significant role in abnormal proliferation of vascular endothelial cell.