DOI QR코드

DOI QR Code

Effect of PPARα activator and exercise on angiogenesis of white adipose tissue in high fat diet fed mice

고지방 사료를 섭취한 쥐에서 백색지방조직의 혈관신생에 대한 PPARα activator와 운동의 영향

  • Sun-Hyo Jeong (Division of Biological Sciences, Mokwon University)
  • 정선효 (목원대학교 생명과학부)
  • Received : 2023.09.18
  • Accepted : 2023.10.19
  • Published : 2023.10.31

Abstract

It was investigated whether PPARα activator more effectively inhibits angiogenesis of white adipose tissue in exercise mice that ate high fat diet compared to non-exercise mice that ate high fat diet. Male mice were randomly divided into a control group not treated with a PPARα activator fenofibrate and exercise (Con), a group treated with fenofibrate alone (FF), a group treated with exercise alone (Ex), and a group treated with a combination of fenofibrate and exercise (Ex+FF). (Ex+FF). All mice was fed high-fat diet for 8 weeks. The weight of white adipose tissue and the size of white adipocytes decreased in FF, Ex, and Ex+FF compared to Con, and decreased more in Ex+FF Ex+FF compared to FF. In white adipose tissue, the gene expression of MMPs and angiogenic factors decreased in FF, Ex, and Ex+FF compared to Con, and more decreased in Ex+FF compared to FF. On the other hand, gene expression of angiogenic inhibitors increased in FF, Ex and Ex+FF compared to Con, and increased more in Ex+FF compared to FF. Therefore, this study revealed that the combined treatment of fenofibrate and exercise effectively inhibits the angiogenesis of white adipose tissue, reducing the increase in white adipose tissue and suppressing abdominal obesity, rather than the single treatment of fenofibrate.

PPARα activator가 고지방 사료를 섭취한 운동하지 않은 쥐에 비해 고지방 사료를 섭취한 운동 쥐에서 백색지방조직의 혈관신생을 보다 효과적으로 억제하는지를 조사하였다. 수컷 쥐는 무작위로 PPARα activator인 fenofibrate와 운동을 모두 처리하지 않은 대조군(Con), fenofibrate 단독처리군(FF), 운동 단독처리군(Ex) 및 fenofibrate와 운동의 조합처리군(Ex+FF)으로 나누어 8주간 고지방 사료를 섭취시켰다. 백색지방조직의 무게와 백색지방세포의 크기는 Con에 비해 FF, Ex 및 Ex+FF 모두 감소하였으며, Ex+FF는 FF에 비해 더욱 감소하였다. 백색지방조직에서 MMPs와 혈관신생 인자의 유전자 발현은 Con에 비해 FF, Ex 및 Ex+FF 모두 감소하였으며, Ex+FF는 FF에 비해 더욱 감소하였다. 그러나 혈관신생 억제인자의 유전자 발현은 Con에 비해 FF, Ex 및 Ex+FF 모두 증가하였고, Ex+FF는 FF에 비해 더욱 증가하였다. 따라서 본 연구는 fenofibrate 단독처리보다는 fenofibrate와 운동의 조합처리가 효과적으로 백색지방조직의 혈관신생을 억제함으로써 백색지방조직의 증가를 감소시키고 복부비만을 억제한다는 것을 밝혔다.

Keywords

References

  1. P. Carmeliet, R. K. jain, "Angiogenesis in Cancer and other Diseases", Nature, Vol.407, No.6801 pp. 249-257, (2000).  https://doi.org/10.1038/35025220
  2. S. L. Faria, O. P. Faria, C. S. Menezes, H. R. de Gouvea, M. de Almeida Cardeal, "Metabolic Profile of Clinically Severe Obese Patients", Obesity Surgery, Vol.22, No.8 pp. 1257-1262, (2012).  https://doi.org/10.1007/s11695-012-0651-y
  3. A. Bouloumie, K. Lolmede, C. Sengenes, J. Galitzky, M. Lafontan, "Angiogenesis in Adipose Tissue", Annales d'endocrinologie, Vol.63, No.2 Pt 1 pp. 91 -95, (2002). 
  4. H. R. Lijnen, E. Maquoi, L. B. Hansen, B. Van Hoef, L. Frederix, D. Collen, "Matrix Metalloproteinase Inhibition Impairs Adipose Tissue Development in Mice", Arteriosclerosis, Thrombosis, and Vascular Biology Vol.22, No.3 pp. 374-379, (2002).  https://doi.org/10.1161/hq0302.104522
  5. A. Bouloumie, C. Sengenes, G. Portolan, J. Galitzky, M. Lafontan, "Adipocyte Produces Matrix Metalloproteinases 2 and 9: Involvement in Adipose Differentiatio n", Diabetes Vol.50 No.9 pp. 2080-2086, (2001).  https://doi.org/10.2337/diabetes.50.9.2080
  6. J. Li, X. Yu, W. Pan, R. H. Unger, "Gene Expression Profile of Rat Adipose Tissue at the Onset of High-fat-diet Obesity", American Journal of Physiology. Endocrinology and Metabolism, Vol.282, No.6 pp. E1334-E1341, (2002).  https://doi.org/10.1152/ajpendo.00516.2001
  7. E. Brakenhielm, R. Cao, B. Gao, B. Angelin, B. Cannon, P. Parini, Y. Cao, "Angiogenesis Inhibitor, TNP-470, Prevents Diet-induced and Genetic Obesity in Mice", Circulation Research, Vol.94, No.12 pp. 1579-1588, (2004).  https://doi.org/10.1161/01.RES.0000132745.76882.70
  8. M. A. Rupnick, D. Panigrahy, C. Y. Zhang, S. M. Dallabrida, B. B. Lowell, R. Langer, M. J. Folkman, "Adipose Tissue Mass can be Regulated through the Vasculature", Proceedings of the National Academy of Sciences of the United States of America, Vol.99, No.16 pp. 10730-10735, (2002).  https://doi.org/10.1073/pnas.162349799
  9. V. Mohamed-Ali, J. H. Pinkney, S. W. Coppack, "Adipose Tissue as an Endocrine and Paracrine Organ", International Journal of Obesity and Related Metabolic Disorders, Vol.22, No.12 pp. 1145-1158, (1998).  https://doi.org/10.1038/sj.ijo.0800770
  10. M. Koenen, M. A. Hill, P. Cohen, J. R. Sowers, "Obesity, Adipose Tissue and Vascular Dysfunction", Circulation Research, Vol.128, No.7 951-968. (2021).  https://doi.org/10.1161/CIRCRESAHA.121.318093
  11. R. Zheng, H. Shen, J. Li, J. Zhao, L. Lu, M. Hu, Z. Lin, H. Ma, H. Tan, M. Hu, J. Li, "Qi Gong Wan ameliorates adipocyte hypertrophy and inflammation in adipose tissue in a PCOS mouse model through the Nrf2/HO-1/Cyp1b1 pathway: Integrating network pharmacology and experimental validation in vivo", Journal of Ethnopharmacology, Vol.301 pp. 115824, (2023). 
  12. J. C. Fruchart, "Peroxisome Proliferator-activated Receptor-alpha (PPARalpha): at the Crossroads of Obesity, Diabetes and Cardiovascular Disease", Atherosclerosis, Vol.205, No.1 pp. 1-8, (2009).  https://doi.org/10.1016/j.atherosclerosis.2009.03.008
  13. Y. Shin, M. Lee, D. Lee, J. Jang, S. S. Shin, M. Yoon, "Fenofibrate Regulates Visceral Obesity and Nonalcoholic Steatohepatitis in Obese Female Ovariectomized C57BL/6J Mice", International Journal of Molecular Sciences, Vol.22, No.7 pp. 3675, (2021). 
  14. J. Yoo, I. K. Jeong, K. J. Ahn, H. Y. Chung, Y. C. Hwang, "Fenofibrate, a PPARα Agonist, Reduces Hepatic Fat Accumulation through the Upregulation of TFEB-mediated Lipophagy", Metabolism, Vol.120 pp. 154798, (2021). 
  15. M. Lv, D. Xie, X. Long, "The Effect of Fenofibrate, a Peroxisome Proliferator-activated Receptor α Agonist, on Cardiac Damage from Sepsis in BALB/c Mice", Cellular and Molecular Biology, Vol.67, No.6 pp. 260-266, (2022).  https://doi.org/10.14715/cmb/2021.67.6.34
  16. Y. Lu, H. Li, S. W. Shen, Z. H. Shen, M. Xu, C. J. Yang, F. Li, Y. B. Feng, J. T. Yun, L. Wang, H. J. Qi, "Swimming Exercise Increases Serum Irisin Level and Reduces Body Fat Mass in High-fat-diet Fed Wistar Rats.", Lipids in Health and Disease, Vol.15 pp. 93, (2016). 
  17. A. Song, C. Wang, L. Ren, J. Zhao, "Swimming Improves High-fat Induced Insulin Resistance by Regulating Lipid and Energy Metabolism and the Insulin Pathway in Rats", International Journal of Molecular Medicine, Vol.33, No.6 pp. 1671-1679, (2014).  https://doi.org/10.3892/ijmm.2014.1738
  18. F. Zheng, Y. Cai, "Concurrent Exercise Improves Insulin Resistance and Nonalcoholic Fatty Liver Disease by Upregulating PPAR-γ and Genes Involved in the Beta-oxidation of Fatty Acids in ApoE-KO Mice Fed a High-fat Diet", Lipids in Health and Disease, Vol.18, No.1 pp. 6, (2019). 
  19. P. Carmeliet, V. Ferreira, G. Breier, S. Pollefeyt, L. Kieckens, M. Gertsenstein, M. Fahrig, A. Vandenhoeck, K. Harpal, C. Eberhardt, C. Declercq, J. Pawling, L. Moons, D. Collen, W. Risau, A. Nagy, "Abnormal Blood Vessel Development and Lethality in Embryos Lacking a Single VEGF Allele", Nature, Vol.380, No.6573 pp. 435-439, (1996).  https://doi.org/10.1038/380435a0
  20. A. Bikfalvi, S. Klein, G. Pintucci, D. B. Rifkin, "Biological Roles of Fibroblast Growth Factor-2", Endocrine Reviews, Vol.18 pp. 26-45, (1997).  https://doi.org/10.1210/edrv.18.1.0292
  21. R. Cao, E. Brakenhielm, C. Wahlestedt, J. Thyberg, Y. Cao, "Leptin Induces Vascular Permeability and Synergistically Stimulates Angiogenesis with FGF-2 and VEGF", Proceedings of the National Academy of Sciences of the United States of America, Vol.98, No.11 pp. 6390-6395, (2001).  https://doi.org/10.1073/pnas.101564798
  22. M. A. Valentino, J. E. Lin, S. A. Waldman, "Central and Peripheral Molecular Targets for Antiobesity Pharmacotherapy", Clinical Pharmacology and Therapeutics, Vol.87, No.6 pp. 652-662, (2010).  https://doi.org/10.1038/clpt.2010.57
  23. H. R. Lijnen, E. Maquoi, P. Holvoet, A. Mertens, F. Lupu, P. Morange, M. C. Alessi, I. Juhan-Vague, "Adipose Tissue Expression of Gelatinases in Mouse Models of Obesity", Thrombosis and Haemostasis, Vol.85 No.6 pp. 1111-1116, (2001).  https://doi.org/10.1055/s-0037-1615971
  24. M. Van Hul, H. R. Lijnen, "A Functional Role of Gelatinase A in the Development of Nutritionally Induced Obesity in Mice", Journal of Thrombosis and Haemostasis, Vol.6, No.7 pp. 1198-1206, (2008).  https://doi.org/10.1111/j.1538-7836.2008.02988.x
  25. H. R. Lijnen, E. Maquoi, L. B. Hansen, B. Van Hoef, L. Frederix, D. Collen, "Matrix Metalloproteinase Inhibition Impairs Adipose Tissue Development in Mice", Arteriosclerosis, Thrombosis, and Vascular Biology Vol.22, No.3 pp. 374-379, (2002).  https://doi.org/10.1161/hq0302.104522
  26. A. Bouloumie, C. Sengenes, G. Portolan, J. Galitzky, M. Lafontan, "Adipocyte Produces Matrix Metalloproteinases 2 and 9: Involvement in Adipose Differentiation", Diabetes, Vol.50, No.9 pp. 2080-2086, (2001).  https://doi.org/10.2337/diabetes.50.9.2080
  27. C. Chavey, B. Mari, M. N. Monthouel, S. Bonnafous, P. Anglard, E. Van Obberghen, S Tartare-Deckert, "Matrix Metalloproteinases are Differentially Expressed in Adipose Tissue during Obesity and Modulate Adipocyte Differentiation", The Journal of Biological Chemistry, Vol.278, No.14 pp. 11888-11896, (2003).  https://doi.org/10.1074/jbc.M209196200
  28. G. Croissandeau, M. Chretien, M. Mbikay, "Involvement of Matrix Metalloproteinases in the Adipose Conversion of 3T3-L1 Preadipocytes", The Biochemical Journal, Vol.364, No.Pt 3 pp. 739-746, (2002).  https://doi.org/10.1042/bj20011158
  29. H. S. Alameddine, "Matrix Metalloproteinases in Skeletal Muscles: Friends or Foes?", Neurobiology of Disease, Vol.48, No.3 pp. 508-518, (2012).  https://doi.org/10.1016/j.nbd.2012.07.023
  30. M. D. Johnson, H. R. Kim, L. Chesler, G. Tsao-Wu, N. Bouck, P. J. Polverini, "Inhibition of Angiogenesis by Tissue Inhibitor of Metalloproteinase", Journal of Cellular Physiology, Vol.160, No.1 pp. 194-202, (1994).  https://doi.org/10.1002/jcp.1041600122
  31. D. Fukumura, A. Ushiyama, D. G. Duda, L. Xu, J. Tam, V. Krishna, K. Chatterjee, I. Garkavtsev, R. K. Jain, "Paracrine Regulation of Angiogenesis and Adipocyte Differentiation during in vivo Adipogenesis", Circulation Research, Vol.93 No.9 pp. e88-e97, (2003).  https://doi.org/10.1161/01.RES.0000099243.20096.FA
  32. J. E. Rundhaug, "Matrix Metalloproteinases, Angiogenesis, and Cancer: Commentary re: A. C. Lockhart et al., Reduction of Wound Angiogenesis in Patients Treated with BMS-275291, A Broad Spectrum Matrix Metalloproteinase Inhibitor", Clinical Cancer Research, Vol.9, No.2 pp. 551-554, (2003). 
  33. L. J. Hawinkels, K. Zuidwijk, H. W. Verspaget, E. S. de Jonge-Muller, W. van Duijn, V. Ferreira, R. D. Fontijn, G. David, D. W. Hommes, C. B. Lamers, C. F. Sier, "VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis", European Journal of Cancer, Vol.44, No.13 pp. 1904-1913, (2008). https://doi.org/10.1016/j.ejca.2008.06.031