• Title/Summary/Keyword: and system dynamics

Search Result 5,375, Processing Time 0.031 seconds

A Test Study on Interface Dynamics of Current Collection System in High Speed Trains

  • Kim, Jung-Soo;Han, Jae-Hyun
    • International Journal of Railway
    • /
    • v.4 no.2
    • /
    • pp.34-41
    • /
    • 2011
  • Using a test run data, the dynamics of the interface between the catenary and pantograph constituting the current collection system in high-speed trains are investigated. The test run signals are analyzed to determine the dynamic parameters critical to the current collection performance. There are found to be frequency components of the pantograph motion that are dependent on train speed as well as components that are stationary such as the resonant mode of the panhead suspension in the pantograph. From contact force measurement using load cell, the mean contact force was found to be stable while the fluctuating component was found to be dependent on the range of the frequency of the pantograph motion taken into account. The finding implies that numerical investigations reported in the literature that are based on lumped element models of the catenary and/or pantograph provide accurate predictions on the mean value but are of limited use in estimating fluctuation of the contact force. It is concluded that simulation studies based on lumped-element models which do not incorporate panhead structural vibration modes is inaccurate at high train speeds.

A Study on Policy Directions of U-City Planning in Busan using System Dynamics Model (시스템 다이내믹스 모형을 이용한 부산시 U-City 계획의 정책방향 연구)

  • Kim, Byeong Sun;Shin, Dong Bin;Kim, Kirl
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.55-65
    • /
    • 2012
  • The purpose of this study is to construct the System Dynamics Model that can analyze urban spatial and temporal change and suggest the policy directions applicable to U-City Planning in Busan based on the SD model. It reviews previous literatures to elicit U-City issues and performs the case study to simulate urban spatial and temporal changes in Busan. The elicited results are connected into the policy directions of U-City planning. It emphasizes the necessity of business model suggestion based on U-City technology and industry not a tool, the U-City model construction that linkages and integrates the existing cities and new cities, and the excavation of U-City service model reflecting social and demographic changes.

HILS of the Braking System of a High Speed Train (고속전철 제동시스템의 HILS)

  • Hwang, Won-Ju;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.432-437
    • /
    • 2001
  • Korea High Speed Train(KHST) is supposed to run up 350km/h, in which the braking system has a crucial role for the safety of the train. In the design st데 of the braking system, its very hard to ac-quire information data for design guidelines. A HILS(Hardware-In-the-Loop Simulation) system can be used to get design data which could simulate the braking system of the real train in real-time. In this paper, cars are modelled including car dynamics, brake blending algorithms, pneumatic actuator dynamics, the models of each braking devices, adhesive coefficients, and soon. Real-time braking time, distance, and other design parameters are simulated using a DSP board and C language which shows the validity of the proposed method.

  • PDF

A Numerical Analysis on the Pressure Field Around KTX Train Using the Standard Framework of CFD Analysis for Railway System (철도시스템 전산유체해석 표준 프레임웍을 이용한 KTX 차량 주변 압력장에 대한 수치해석)

  • Nam, Sung-Won;Cha, Chang-Hwan;Kwon, Hyeok-Bin
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.511-516
    • /
    • 2006
  • A standard framework of CFD(Computational Fluid dynamics) analysis for railway system has been developed to evaluate the overall aerodynamic performance of railway system and has been adopted to numerical simulation of the pressure field around KTX train. The framework is composed of standard aerodynamic model and standard aerodynamic performance to customize the general CFD solution process reflecting the characteristics of railway system such as various operation mode and performance factors. The results show that the standard framework of CFD analysis for railway system can provide objectivity and consistency to the CFD analysis for railway system and the pressure field around KTX train has been successively solved.

Neurofluid Dynamics and the Glymphatic System: A Neuroimaging Perspective

  • Toshiaki Taoka;Shinji Naganawa
    • Korean Journal of Radiology
    • /
    • v.21 no.11
    • /
    • pp.1199-1209
    • /
    • 2020
  • The glymphatic system hypothesis is a concept describing the clearance of waste products from the brain. The term "glymphatic system" combines the glial and lymphatic systems and is typically described as follows. The perivascular space functions as a conduit that drains cerebrospinal fluid (CSF) into the brain parenchyma. CSF guided to the perivascular space around the arteries enters the interstitium of brain tissue via aquaporin-4 water channels to clear waste proteins into the perivascular space around the veins before being drained from the brain. In this review, we introduce the glymphatic system hypothesis and its association with fluid dynamics, sleep, and disease. We also discuss imaging methods to evaluate the glymphatic system.

Nano-behavior of material beneath an indenter in nanoindentation (나노 인덴테이션에 의한 나노재료의 경도예측 (1) 나노 인덴테이션에서 압자 밑 재료의 나노거동)

  • Kim, J.;Park, J.W.;Kim, Y.S.;Lee, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.111-115
    • /
    • 2003
  • Nanoindentation is simply an indentation test in which the length scale of the penetration is measured in nanometres rather than microns or millimetres, the latter being common in conventional hardness tests. Three-dimensional molecular dynamics simulations have been conducted to evaluate the nanoindentation test. Molecular dynamics simulations were carried out on single crystal copper by varying crystal orientations to investigate nano-behavior of material beneath an indenter in nanoindentation. Morse potential function was used as an interatomic force between indenter and thin film. The result of the simulation shows that crystal orientation significantly influenced the slip system, dislocation nucleation and dislocation behavior.

  • PDF

Modeling the Dynamics of Wildbird's Avian Influenza Using the System Dynamics (시스템다이나믹스를 이용한 철새의 AI 전파 모델)

  • Park, Young-wook;Won, Dong-gyu;Choi, Sung-Bae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1130-1135
    • /
    • 2009
  • Avian Influenza is an infectious desease of birds. The infection can cause a wide spectrum of symptoms in birds, ranging from mild illness to a rapidly fatal diseases which might bring a tremendous economic loss to poultry farms[1]. It can also give fatal diseases to human. Therefore it is important to surveil wildbirds that are primary transportation of avian influenza. This report showed a relationship between avian influenza and a habitat of wildbirds using system dynamics, and concluded with suggestion for surveilance.

  • PDF

Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension (현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발)

  • Jung Hongkyu;Kim Sangsup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

MODELLING THE DYNAMICS OF THE LEAD BISMUTH EUTECTIC EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM BY AN INFINITE IMPULSE RESPONSE LOCALLY RECURRENT NEURAL NETWORK

  • Zio, Enrico;Pedroni, Nicola;Broggi, Matteo;Golea, Lucia Roxana
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1293-1306
    • /
    • 2009
  • In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.

Molecular Dynamics Simulation for the Mechanical Properties of CNT/Polymer Nanocomposites (분자동역학 시뮬레이션을 이용한 나노튜브/고분자 나노복합재의 물성 해석)

  • Yang, Seung-Hwa;Cho, Maeg-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.237-244
    • /
    • 2007
  • In order to obtain mechanical properties of CNT/Polymer nano-composites, molecular dynamics simulation is performed. Overall system was modeled as a flexible unit cell in which carbon nanotubes are embedded into a polyethylene matrix for N $\sigma$ T ensemble simulation. COMPASS force field was chosen to describe inter and intra molecular potential and bulk effect was achieved via periodic boundary conditions. In CNT-polymer interface, only Lennard-Jones non-bond potential was considered. Using Parrinello-Rahman fluctuation method, mechanical properties of orthotropic nano-composites under various temperatures were successfully obtained. Also, we investigated thermal behavior of the short CNT reinforced nanocomposites system with predicting glass transition temperature.