• Title/Summary/Keyword: and hood

Search Result 395, Processing Time 0.026 seconds

Reestimation of Hydrologic Design Data in Donghwa Area (동화지구 절계 수문량 재추정)

  • Kwon, Soon-Kuk;Lee, Jae-Hyoung;Jung, Jae-Sung;Chon, Il-Kweon;Kim, Min-Hwan;Lee, Kyung-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.3-10
    • /
    • 2004
  • The fundamental study of hydrologic redesign of Donghwa area located in a sccond tributary of Seomjin river was performed. The amounts of hydrologic design were estimated using the available cumulated hydrology data provided by Korea Agricultural and Rural Infrastructure Corporation (KARICO). The management status of The water resources in Donghwa area was also widely surveyed. The probability rainfalls, probable maximum precipitation (PMP) and probability floods were estimated and subsequently their changes analyzed. The amount of 200 year frequency rainfall with l day duration was 351.1 mm, 2.5 % increased from the original design value, and The PMP was 780.2 mm. The concentration time was reestimated as 2.5 hours from existing 2.4 hours. Soil Conservation Service(SCS) method was used to estimate effective rainfall- The runoff curve number was changed from 90 to 78, therefore the maximum potential retention was 71.6 mm, 154 % increased from the original value. The Hood estimates using SCS unit hydrograph showed 8 % increase from original value 623 $m^3$/s to 674 $m^3$/s and The probable maximum Hood was 1,637 $m^3$/s. Although the Row rate at the dam site was increased, the Hood risk at the downstream river was decreased by the Hood control of the Donghwa dam.

Horizontal Air-Jet Effect on the Natural Convection around a Range-Hood System (수평 급기가 레인지 후드 주위의 자연대류에 미치는 영향)

  • Kim Byoung Guk;Choi Hyoung Gwon;Yong Ho Taek;Lee Myeong Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.333-340
    • /
    • 2005
  • Horizontal air-jet effect has been utilized in some air conditioning systems in order to control the contaminated air indoor. In the present study, the flow and heat transfer of the contaminated air from a range hood system has been investigated with or without horizontal air-jet effect when the hood fan is on or off. For the present numerical experiment, PAT Flow code has been used. From the present numerical simulations, it has been shown that the air jet of a range hood generates coanda effect confining the contaminated air in a certain region. Furthermore, the qualitative relation between the flow rate of the capture air jet and the distribution pattern of the contamination has been discussed.

Numerical Study on High-Speed railway Tunnel Entrance Hood (고속철도 터널 입구후드에 관한 수치해석적 연구)

  • 김희동;김동현
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.604-611
    • /
    • 1998
  • High-speed railway trains entering and leaving tunnels generate finite amplitude pressure wave which propagate back and forth along the tunnels, reflecting at the open ends of the tunnels and at other discontinuities such as ventilation shafts and the train themselves. In present day railways, the magnitudes of the pressure waves are much too small to cause structual damage, but they are a serious potential source of aural discomport for passengers on unsealed trains. Almost always do the pressure waves propagating along the tunnels lead to a hazardous impulse noise near the exit portal of the tunnel. In order to alleviate such undesirable phenomena, some control strategies have been applied to the compression wave propagating inside the tunnel. The objective of the current work is to investigate the effect of tunnel entrance hoods on the entry compression wave at the vicinity of the tunnel entrance. Three types of entrance hoods were tested by the numerical method using the characteristics of method for a wide range of train speeds. The results show that the maximum pressure gradient of compression wave can be considerably reduced by the tunnel entrance hood. Desirable hood shape for reduction of the pressure transients and impulse noise was found to be of abrupt type hood with its cross-sectional area 2.5times the tunnel area.

  • PDF

Effect of Slot Discharge-Angle Change on Exhaust Efficiency of Range Hood System with Air Curtain (에어커튼형 레인지후드의 슬롯 토출 각도 변화와 배기 효율)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.468-474
    • /
    • 2015
  • When oil is used for cooking in detached or apartment houses, large amounts of oil-mist, smoke, and particulate substances are generated and dispersed into the indoor-air environment. These pollutants diffuse into the surroundings and spread their odor while rising fast at a high temperature due to the heat energy from the gas range. Although the exhaust gas is discharged from the exhaust hood, which is installed on the top of a gas range to remove the diffuse pollutants, the exhaust conditions can vary greatly because they depend on the shape of the exhaust hood and the discharge rate. In this paper, the air that is required for the gas-exhaustion process is supplied by an air curtain that surrounds the kitchen hood, and the pollutant-capturing efficiency varies depending on the angle of the discharge grills; the pollutant-capturing efficiency was studied using a numerical-analysis method. The results indicate that the pollutant-capturing efficiency is not significantly changed by a change of the discharge-grill angle at a low air-discharge rate; however, at a high air-discharge rate, the efficiency value increases with an increase of the discharge-grill angle, whereby the best value occurs at 30 degrees and the efficiency decreases above this angle. Below 30 degrees, the effect of the discharge rate on the capturing efficiency is more than that of the discharge-grill angle.

Heat Transfer Analysis around Transport Cask under Transport Hood (사용후핵연료 운반용기 덮개 내부 열전달 해석)

  • Lee, Dong-Gyu;Park, Jae-Ho;Jung, In-Su;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.161-167
    • /
    • 2011
  • In case that the maximum temperature of any surface readily accessible during transport of a spent nuclear fuel (SNF) transport cask exceeds $85^{\circ}C$ in the absence of insolation under the ambient temperature of $38^{\circ}C$, personnel barriers or transport hood shall be used to prevent people from casual contact with the transport cask surface. Usually the air temperature within the hood and the hood surface temperature are calculated and further utilized as boundary conditions(free stream temperature and external radiation temperature) for thermal evaluation under normal conditions of transport. In this study, these temperatures are derived using the analytical method based on the heat transfer mechanism around the transport cask under transport hood assuming the thermal equilibrium. By comparing the analytical solutions with the results from the detailed calculations with CFD-computer-code FLUENT 12.1 it is verified that the analytical method is still efficient tool to estimate the temperatures and these temperatures can be further used as boundary conditions for thermal evaluation under normal conditions of transport.

Development of simulation equipment system on EPB shield TBM hood operation (토압식 쉴드TBM의 후드부 시뮬레이션 장비 시스템 개발에 대한 연구)

  • Kim, Sang-Hwan;Oh, Tae-Sang;Park, Soo-Hwan;Lee, Choong-Yeoul;Park, Jong-Kwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This paper presents the development of simulation system on EPB shield TBM Hood operation. In recent, EPB shield TBM is widely used in the tunnel construction. Since the hood system of the EPB shield TBM is most important to excavate the tunnel, it is necessary to perform the simulation of hood system to investigate the design and operation parameters prior to tunnel construction. In order to carry out this study, the scaled simulation system was designed and developed. The model tests were performed to verify the developed system. During the simulation, the earth pressures developed in the chamber during tunnelling were measured to evaluate the operation technique. The test results obtained by the developed simulation system show clearly the similar behaviour of TBM hood compared with the field data. It was also found that the ground loss during tunnelling is dependent on the change of earth pressure in chamber. Therefore, the simulation system developed in this study will be very useful to evaluate the operation technique of the TBM hood prior to tunnel construction. In addition, this system will be applied in a various condition of ground to get the operating information.

Assessing the Safety Benefit of an Advanced Vehicular Technology for Protecting Pedestrian(Focused on Active Hood Lift System (AHLS)) (첨단안전차량 효과분석(보행자보호를 위한 Active Hood Lift System (AHLS)을 중심으로))

  • O, Cheol;Gang, Yeon-Su;Kim, Beom-Il;Kim, Won-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.95-102
    • /
    • 2006
  • This study develops a methodology on how to assess the traffic safety benefit of advanced vehicular technology for Protecting pedestrian in pedestrian-vehicle collision. Safety benefit is defined here as the reduction of Pedestrian fatality by employing advanced vehicular technology. As an application of the proposed methodology the safety benefit of active hood lift system (AHLS) is assessed. Both actual accident data analysis and simulation experiment are conducted to establish statistical models that are used for estimating the reduction of pedestrian fatality It is believed that the developed methodology and outcomes would be greatly useful in developing various advanced vehicular technologies and establishing more effective traffic safety policies.

Numerical analysis for development of vehicle engine room cooling hood (차량 엔진룸 냉각용 후드 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.92-97
    • /
    • 2018
  • This study deals with the numerical analysis for hood development to improve the cooling effect of the engine related components in engine room. Reducing the component temperature in engine room caused by a sudden temperature deviation can minimize the durability degradation of components. Therefore, in this study, numerical analysis for the development of the hood in engine room was carried out in four parts such as generator, battery, ECU and power steel oil which are relatively easy to control temperature among the main components in engine room. In order to verify the numerical analysis, experiments were conducted under the same conditions as those assumed in the numerical analysis.

Hood and Bumper Structure Design Methodology for Pedestrian Regulation (보행자 법규와 자동차 후드 및 범퍼 구조물 설계방안)

  • Lee Jaewan;Yoon Kyonghan;Kang Younsoo;Park Kyungtaek;Park Gyungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.162-170
    • /
    • 2005
  • Although the numbers of pedestrian fatalities and injuries are steadily declining worldwide, pedestrian protection is still an important issue. Extensive researches have been carried out in the field of pedestrian protection in order to establish pedestrian safety regulations. The automobile hoods and bumpers, which pedestrians frequently run into during accidents, should be safely designed for pedestrians. Two analysis methods are utilized to design safe structures of the hood and the bumper. They are real experiment and computer simulation. In this research, a method is developed to simultaneously utilize the results from the experiment and the simulation. For design, orthogonal arrays are employed to combine the two methods. Based on this method, a hood and a bumper are designed to protect pedestrians.

A Numerical Study on the Flow Characteristics of Kitchen Hood System (주방용 후드시스템의 유동특성에 관한 수치적 연구)

  • Lim Kyung-Bin;Lee Kwang-Sub;Lee Chang-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.359-369
    • /
    • 2006
  • This study aims deriving analysis the flow characteristic of kitchen hood system with using 3-D numerical analysis method and improving the system to expel pollutes more efficiently. This system is applied with $k-{\varepsilon}$ turbulent model and using incompressibility viscosity flow range and boundary condition which are related to Bossinesq approximation following density variation in control volume. To understand the flow characteristics of four models, this study only focuses on velocity field, temperature field, and concentration field varying with followings whether separation plate is set or not and the shapes of separation plates. The quantity of air, speed of exhaust fan and temperature and concentration of heating source are concerned as constant values.