• Title/Summary/Keyword: and

Search Result 1,271,694, Processing Time 1.028 seconds

Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating (나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상)

  • Seo, Seong-Wook;Ha, Min-Seok;Kwon, Oh-Yang;Cho, Heung-Soap
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • The electrical conductivity of carbon-fiber reinforced plastics (CFRP's) has been improved by indium-tin oxide (ITO) nano-particle coating on carbon fibers for the purpose of lightning strike protection of composite fuselage skins. ITO nano-particles were coated on the surface of carbon fibers by spraying the colloidal suspension with 10~40% ITO content. The electrical conductivity of the CFRP has been increased more than three times after ITO coating, comparable to or higher than that of B-787 composite fuselage skins with metal wire-meshes on the outer surface, without sacrificing the tensile property due to the existence of nano-particles at fiber-matrix interface. The damage area by the simulated lightning strike was also verified for different materials and conditions by using ultrasonic C-scan image. As the electrical conductivity of 40% nano-ITO coated sample surpass that of the B-787 sample, the damage area by lightning strike also appeared comparable to that of the materials currently employed for composite fuselage construction.

Study of Cure Kinetics of Vacuum Bag Only Prepreg Using Differential Scanning Calorimetry (시차주사열량계를 이용한 진공백 성형 프리프레그의 경화 거동 연구)

  • Hyun, Dong Keun;Lee, Byoung Eon;Shin, Do Hoon;Kim, Ji Hoon
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • The cure kinetics of carbon fiber-reinforced prepreg for Vacuum Bag Only(VBO) process was studied by differential scanning calorimetry (DSC). The total heat of reaction (ΔHtotal = 537.1 J/g) was defined by the dynamic scanning test using prepregs and isothermal scanning tests were performed at 130℃~180℃. The test results of isothermal scanning were observed that the heat of reaction was increased as the temperature elevated. The Kratz model was applied to analyze the cure kinetics of resin based on the test results. To verify the simulation model, the degree of cure from panels using different cure cycles were compared with the measurement. The simulation model showed that the error against the experimental value was less than 3.4%.

Experimental Study on the Fire Proofing Characteristic of Fire Resistance Panel that it attaches to PSC Airpit-Slab (PSC 풍도슬래브에 부착된 내화패널의 내화특성에 관한 실험연구)

  • Lee, Doo Sung;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.465-473
    • /
    • 2013
  • In this Study, the performance of precast PSC slabs with fire resistance panel for fire resistance of the tunnel system was evaluated by experimentally. The fire test was performed in fire resistance (electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von stra${\beta}$entunneln) time heating temperature curve. The test results showed that the measured temperatures at the t=0 mm depth of PSC slab with precast fire resistance panel during a fire was maximum temperature $367^{\circ}C$, lower than $380^{\circ}C$ (ITA 2004), when damage occurs. Also, at the t=25 mm, the maximum temperature was $239^{\circ}C$, which was lower than the damage temperature of rebar, $250^{\circ}C$. From the results, the use of precast fire resistance panel (t=25 mm) improves fire resistance of PSC structures.

Development Study on the Prototype of Level Measurement System of Launch Vehicle Propellant Tanks (추진제 충전량 측정시스템 시제 개발 연구)

  • Shin, Dong-Sun;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.590-593
    • /
    • 2010
  • The processes of supplying propellants into propellant tanks play important roles during launch preparation of satellite launch vehicle. The total weight of launch vehicle greatly depends on the accuracy of filling quantity of propellant during launch preparation. Among propellants used for launch vehicles a cryogenic propellant such as liquid oxygen is widely adapted as an oxidizer for launch vehicles. Such cryogenic propellant usually resides in a propellant tank as two-phase fluid with liquid and gas, which needs an accurate level measurement system to detect the position of propellant surface precisely. In this paper the fabricating process of a level measurement system using capacitance type with three electrodes is analyzed. In addition, the change of electric signal according to the height of liquid is verified by testing the level measurement system under consideration. The results of tests shows as expected the linear trend of voltage according to the change of water height in a tank.

  • PDF

Temperature Evaluation on Long-term Storage of Radioactive Waste Produced in the Process of Isotope Production (동위원소 생산공정에서 발생한 방사성 폐기물 장기저장소 온도평가)

  • Jeong, Namgyun;Jo, Daeseong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.471-475
    • /
    • 2016
  • In the present study, temperature evaluations on long-term storage of radioactive waste produced in the process of isotope production were performed using two different methods. Three-dimensional analysis was carried out assuming a volumetric heat source, while two-dimensional studies were performed assuming a point source. The maximum temperature difference between the predictions of the volumetric and point source models was approximately $5^{\circ}C$. For the conceptual design level, a point source model may be suitable to obtain the overall temperature characteristics of different loading locations. For more detailed analysis, the model with the volumetric source may be applicable to optimize the loading pattern in order to obtain minimum temperatures.

Study on Design Change of a Pipe Affected by Liquid Droplet Impingement Erosion (액적충돌침식 영향 배관의 설계변경에 관한 연구)

  • Hwang, Kyeong-Mo;Lee, Chan-Gyu;Bhang, Keug-Jin;Yim, Young-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1097-1103
    • /
    • 2011
  • Liquid droplet impingement erosion (LDIE) is caused by the impact of high-velocity droplets entrained in steam or air on metal. The degradation caused by the LDIE has been experienced in steam turbine internals and high-velocity airplane components (particularly canopies). Recently, LDIE has also been observed in the pipelines of nuclear plants. LDIE among the pipelines occurs when two-phase steam experiences a high pressure drop (e.g., across an orifice in a line to the condenser). In 2011, a nuclear power plant in Korea experienced a steam leak caused by LDIE in a pipe through which a two-phase fluid was flowing. This paper describes a study on the design change of a pipe affected by LDIE in order to mitigate the damage. The design change has been reviewed in terms of fluid dynamics by using the FLUENT code.

Analysis of the Bioheat Equation Considering Tissue Layers with Sinusoidal Temperature Oscillation on the Skin (사인 주기의 온도 변화가 가해지는 피부 조직의 생체열 방정식에 대한 해석)

  • Choi, Woo-Lim;Moon, Sang-Don;Youn, Suk-Bum;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.757-762
    • /
    • 2011
  • We investigate the transient temperature response in biological tissue whose surface is exposed to alternately varying sinusoidal oscillation. Based on the Pennes bio-heat equation, we apply numerical analysis using a finite element method to find the effects of the physical properties of the skin layers. Three layers of tissue-epidermis, dermis, and subcutaneous-are considered as the solution region. We investigate the effects of different properties of the skin layers on the temperature profile. We also investigate the effects of the perfusion rate for the dermis, which is the most sensitive layer. The results show that the temperature profile of tissue depth has a discontinuous point when different physical properties are used.

Developing an Instrument Ensuring Reliable Contact Conditions for Contact-Type Area-varying Capacitive Displacement Sensors (접촉식 면적변화형 정전용량 변위센서의 접촉 안정성을 위한 기구의 개발)

  • Kim, Sung-Joo;Lee, Won-Goo;Moon, Won-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1147-1156
    • /
    • 2011
  • A contact-type area-varying capacitive displacement sensor, or CLECDiS, can measure displacements over millimeter ranges with nanometer resolution. However, a small changes in the contact condition due to the surface profile or friction, which are inherent characteristics of contact-type sensors, lead to significant distortion of the output signal. Therefore, ensuring reliable contact conditions during CLECDiS measurements is the most important area to be improved in their actual use. Herein, in order to design an instrument for ensuring reliable contact conditions, the contact condition is analyzed by characterizing the signal distortion, observing the pressure distribution between the contacting surfaces, and measuring the motional errors of the sensor using a laser Doppler vibrometer (LDV). The manufactured instrument enables a CLECDiS to be used in an ultraprecise positioning system with improved reliability.

CWT-Based Method for Identifying the Location of the Impact Source in Buried Pipes (연속웨이브렛 변환을 이용한 충격음 위치 규명)

  • Kim, Eui-Youl;Kim, Min-Su;Lee, Sang-Kwon;Koh, Jae-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1555-1565
    • /
    • 2010
  • This paper presents a new method for indentifying the location of impact source in a buried duct. In a gas pipeline, the problem of leakage occurs due to the mechanical load exerted by construction equipment. Such leakage can cause catastrophic disasters in gas supply industries. Generally, the cross-correlation method has been used for indentifying the location of impact source in a pipeline. Since this method involves the use of the dispersive acoustic wave, it derives an amount of error in process of estimating the time delay between acoustic sensors. The object of this paper is to estimate the time delay in the arrival of the direct wave by using the wavelet transform instead of the dispersive wave. The wavelet transform based method gives more accurate estimates of the impact location than the cross-correlation method does. This method is successfully used to identify the location of impact force in an actual buried gas duct.

Study of Factor Causing Wear of a Barrel Cam in a Paper-Cup-Forming Machine by Using Multibody Dynamics Model (다물체 동역학 모델을 이용한 종이컵 성형기용 배럴캠의 마모 인자에 관한 연구)

  • Jun, Kab-Jin;Park, Tae-Won;Cheong, Kwang-Yeil;Kim, Young-Guk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.361-367
    • /
    • 2010
  • The barrel cam, which is a type of cylindrical cam, has been widely used as a part of index drive units for automatic manufacturing machines. The axis of rotation of the barrel cam is orthogonal to the axis of rotation of the follower. The index drive rotates or dwells depending on the cam profile, while the cam rotates with a constant velocity. Continuous sliding contact between the barrel cam and the follower surfaces causes wearing of the adhesive between them. This study shows that the contact force between two sliding bodies is responsible for the wear of the barrel cam in the paper-cup-forming machine. This contact force is calculated by using the multibody dynamics model of the paper-cup-forming machine. The analytical result is validated by comparing it to the actual wear spots on the real product.