DOI QR코드

DOI QR Code

Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating

나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상

  • 서성욱 (인하대학교 대학원 기계공학과) ;
  • 하만석 (인하대학교 대학원 기계공학과, (주)삼성전자 OMS 연구소) ;
  • 권오양 (인하대학교 기계공학부) ;
  • 최흥섭 ((주)대한항공 R&D Center)
  • Published : 2010.12.31

Abstract

The electrical conductivity of carbon-fiber reinforced plastics (CFRP's) has been improved by indium-tin oxide (ITO) nano-particle coating on carbon fibers for the purpose of lightning strike protection of composite fuselage skins. ITO nano-particles were coated on the surface of carbon fibers by spraying the colloidal suspension with 10~40% ITO content. The electrical conductivity of the CFRP has been increased more than three times after ITO coating, comparable to or higher than that of B-787 composite fuselage skins with metal wire-meshes on the outer surface, without sacrificing the tensile property due to the existence of nano-particles at fiber-matrix interface. The damage area by the simulated lightning strike was also verified for different materials and conditions by using ultrasonic C-scan image. As the electrical conductivity of 40% nano-ITO coated sample surpass that of the B-787 sample, the damage area by lightning strike also appeared comparable to that of the materials currently employed for composite fuselage construction.

복합재 항공기 동체의 낙뢰손상방지를 목적으로 탄소섬듐-주석 산화물(ITO) 나노입자를 코팅함으로써 탄소섬유강화플라스틱(CFRP) 복합재료의 전기전도도를 향상하였다. 탄소섬유에 코팅된 ITO 나노입자는 10~40%의 농도로 콜로이드 상태에서 분사되었다. CFRP의 전기전도도는 코팅 후 3배 이상 증가하였으며 현재 B-787 복합재 항공기 동체에 사용 중인 기술인 금속메쉬를 CFRP 외층에 매몰한 경우보다도 높은 전기전도도를 얻을 수 있었으며, 나노입자 코팅으로 섬유-기지 계면에 미지는 악영향은 발견되지 않았다. 모의 낙뢰에 의한 손상영역은 각각 다른 처리를 한 재료와 조건에 따라 초음파 C-scan 이미지로 확인하였다. ITO 40% 코팅 시편의 경우 전기전도도는 B-787 샘플의 경우보다 높았지만 낙뢰에 의한 손상영역의 크기는 거의 비슷한 수준이었다.

Keywords

References

  1. C. A. Mahieux, "Cost effective manufacturing process of thermoplastic matrix composites for the traditional industry: the example of carbon-fiber reinforced thermoplastic flywheel," Composite Structures, Vol 52, 2001, pp. 517-521. https://doi.org/10.1016/S0263-8223(01)00041-1
  2. Qian. D, Bao. L, Takatera. M, Kemmochi. K, and Yamanaka. A, "Fiber-reinforced polymer composite materials with high specific strength and excellent solid particle erosion resistance," Wear, Vol. 268, No. 3-4, 2010, pp. 637-642. https://doi.org/10.1016/j.wear.2009.08.038
  3. Gou. J, Tang. Y, Liang. F, Zhao. Z, Firsich. D, and Fielding. J, "Carbon nanofiber paper for lightning strike protection of composite materials," Composites Part B: Engineering, Vol. 41, No. 2, 2010, pp. 192-198. https://doi.org/10.1016/j.compositesb.2009.06.009
  4. Oh. J, Oh. K, Kim. C, and Hong. C, "Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges," Composites Part B: Engineering, Vol. 35, No. 1, 2004, pp. 49-56. https://doi.org/10.1016/j.compositesb.2003.08.011
  5. Jin-Bong Kim, Sang-Kwan Lee, Chun-Gon Kim, "A Study on Carbon Nano Materials as Conductive Fillers for Microwave Absorbers," J of the Korean Society for Composite Materials, Vol. 19, No. 5, 2006, pp. 28-33.
  6. F. A. Fisher, J. A. Plumer, R. A. Perala, "Aircraft Lightning Protection Handbook," Federal Aviation Administration, 1989.
  7. Min-Seok Ha, Oh-Yang Kwon, Heung-Soap Choi, "Improved Electrical Conductivity of CFRP by Conductive Nano-Particles Coating for Lightning Strike Protection," J. of the Korean Society for Composite Materials, Vol 23, No. 2, 2010, pp. 31-36. https://doi.org/10.7234/kscm.2010.23.2.031
  8. V. I. Roldughin and V. V. Vysotskii, Prog. Organic Coatings. Vol. 39, 2000, pp. 81- https://doi.org/10.1016/S0300-9440(00)00140-5

Cited by

  1. Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-Epoxy Composites vol.26, pp.1, 2013, https://doi.org/10.7234/kscm.2013.26.1.72
  2. Compression-after-Impact Testing of CFRP Laminates Subjected to Simulated Lightning Damage Monitored by Acoustic Emission vol.224, pp.1662-7482, 2012, https://doi.org/10.4028/www.scientific.net/AMM.224.73