• Title/Summary/Keyword: anchors

Search Result 540, Processing Time 0.02 seconds

Arthroscopic Bankart Repair in Traumatic Anterior Shoulder Instability with Bio-knotless Anchor (Preliminary and Technical Report) (견관절 외상성 전방 불안정성에 대한 Bio-knotless 봉합 나사못을 이용한 관절경적 Bankart 병변 봉합술 (예비 보고))

  • Yum, Jae-Kwang;Sung, Ki-Hyuk;Shin, Yong-Woon
    • Clinics in Shoulder and Elbow
    • /
    • v.9 no.1
    • /
    • pp.105-110
    • /
    • 2006
  • Purpose: This study reports the clinical results of the arthroscopic Bankart repair in traumatic anterior instability of the shoulder with bio-knotless anchor. Materials and Methods: 21 cases of 21 patients (20 male and 1 female) were included in this study. The average age was 24.8 years old and the period from the first injury to operation was average 37.2 months. All cases had Bankart lesion and 12 cases had Hill-Sachs' lesion. The SLAP lesion was associated in 6 cases. Preoperative Rowe score was average 29.1. Arthroscopic Bankart repair with bio-knotless anchor were performed in all cases; 3 anchors at 3, 4, 5 O'clock position of the glenoid were used in 11 cases and 2 anchors at 4, 5 O'clock position were used in 10 cases. All the associated SLAP lesions were repaired arthroscopically with bio-knotless anchor. Thermal capsular shrinkage at the anterior and inferior shoulder capsule after the Bankart repair was performed in 3 cases. The average follow up period was 20.2 months. Results: The Rowe score improved to 92.8, excellent in 17 cases and good in 4 cases, at last follow up period and 20 cases had full range of motion of the shoulder. 1 case had mild limited range of motion of the shoulder (150 degrees in flexion, 60 degrees in external rotation and T12 level in internal rotation) without any problem in normal activity. The arthroscopic revision surgery of the shoulder was performed in 1 case because of multiple traumatic injuries of the shoulder with pain postoperatively. Conclusion: Arthroscopic Bankart repair with bio-knotless anchor in traumatic anterior shoulder instability is one of the good methods because of the good clinical results.

A Parameter Study on the Shear Failure Behavior of Post-installed Set Anchor for Light Load (저하중용 후설치 세트앵커의 전단파괴거동에 관한 매개변수 연구)

  • Um, Chan-Hee;Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.55-63
    • /
    • 2015
  • Post-installed concrete set anchors are installed after the concrete hardened. These anchors increasing usage in development of construction equipment and flexible construction. The anchor loaded in shearing exhibits various failure modes such as steel failure, concrete failure, concrete pryout, depending on the shear strength of steel, the strength of concrete, edge distance and anchor interval, etc,. In this study, the objective is to investigate the effects of the variations like anchor embedment depth, edge distance and concrete strength on experimental and finite element analysis of shear failure behavior of post-installed concrete set anchor for light load embedded in concrete. The results of embedment depth experiments show that concrete strength has much affection on the shallow embedment depth. Concrete strength has no much affection with anchor interval and edge distance parameter and both experimental results occurred same failure mode. By comparing the experimental results that occurred steel failure mode show that as strong as concrete strength are the displacement results are small.

Lateral Pressure on ,anchored Excavation Retention walls (앵카지지 굴착흙막이벽에 작용하는 측방토압)

  • 홍원표;이기준
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.81-98
    • /
    • 1992
  • Deep excavation increases utility of underground spaces for high buildings. subways etc. To excavate vertically the underground, safe earth retaining walls and supporting systems should be prepared. Recently anchors have been used to support the excavation wall. The anchored excavation has some advantages toprovide working space for underground construction. In this paper the prestressed anchor loads were measured by load cells which attacted to the anchors to support the excavation walls at eight construction fields. where under-ground deep excavation was performed on cohesionless soils. The lateral pressures on the retaining walls, which are estimated from the measured anchor forces, shows a trapezoidal distribution that the pressure increases linearly with depth from the ground surface to 30% of the excavation depth and then keeps constant value regardless of the stiffness of the walls. The maximum lateral pressure was same to 63% of the Ranking active earth pressure or 17% of the vertical overburden pressure at the final depth The investigation of the measured lateral pressure on the anchored excavation walls shows that empirical earth pressure diagram presented by Terzaghi-Peck and Tschebotarioff could be applied with some modifications to determine anchor loads for the anchored excavation in cohesionless soils.

  • PDF

Arthroscopic Bankart Repair with Suture Anchor (Bankart 병변의 봉합나사를 이용한 관절경적 봉합술)

  • Kim Kyung Taek;Kim Chul Hong;Kim Sung Hoo
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.1 no.2
    • /
    • pp.149-153
    • /
    • 2002
  • Purpose: To evaluate the efficacy of arthroscopic Bankart repair using suture anchors for treatment of traumatic anterior instability of shoulder joint .Materials and Methods: We performed arthroscopic Bankart repair using suture anchor in 54cases and evaluated the results with the functional grading system of Rowe and Zarins after patients were followed up for more than 12 months. Results: Combined pathologies identified under arthroscopy were Hill-Sachs lesion in 28 cases, SLAP lesion in 6 cases and chondromalacia of humeral head in 6 cases. The results were excellent or good in 50 cases(92.6$\%$), and redislocation was happened only two cases. Conclusion: We conclude that arthroscopic Bankart repair with suture anchors is one of the reliableand effective method for treatment of recurrent shoulder dislocation with Bankart lesion.

  • PDF

Seismic Performance of the Anchor System of Bearing-protection Devices Preventing the Unseating Failure of Bridges (낙교 방지를 위한 받침보호장치의 앵커부 내진성능)

  • Jeong, Hyeok-Chang;Kim, Min-Su;Park, Kwang-Soon;Ju, Hyeong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.45-53
    • /
    • 2010
  • The unseating failure of bridges, which is one of the most severe types of damage leading to the loss of transportation function, should be avoided in earthquakes. As a measure of prevention of unseating failure resulting from the failure of bearings, bearing-protection devices are frequently used. They are installed beside the bearings and protect the bearings by resisting a seismic load transmitted from the superstructure. In order to show appropriate seismic performance, the strength of anchors as well as of device bodies should be confirmed. In Korea, they have been installed only according to the design provided by device agents, because a proper design method for the anchors has not been established. In this study the performance of bearing-protection devices with various heights of concrete bed blocks has been investigated experimentally, and a proper design method has been proposed to secure seismic performance.

The design of coffer dam utilized P.R.D. method (P.R.D. 공법을 활용한 가물막이 설계)

  • Park, Chal-Sook;Lee, Kyu-Tak;Yum, Kyung-Taek;Kim, Yoon-Ku;Kang, Bong-Gwon;Lee, Jae-Weon;Lim, Seok-San;Jeong, Ji-Yearl
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.869-887
    • /
    • 2008
  • Coffer dam for tunnel type spillway in inflow section of Dae-am dam was originally planned as 2 lines sheet piles with Water Zet method. But, the result of pilot test was caused of some problems that vibration during installation of pile could pollute water and water leakage could the lower part. So, sheet piles was not satisfactory for faculty of coffer dam. Structural instability of sheet pile system need to reinforcement. Characteristic of Dae-am dam was small reservoir capacity but wide drainage area, of which it was judgment that security of leakage and stability was difficult during excavation of inlet part. So, we consider that water curtain method utilized with in site pouring concrete pile method was designed at weir part of spillway. We were known about basement rock that geological boring was carried out in weir part. After taking a deep consideration, PRD method was accepted as a new method. Concrete pile by PRD was installed to below country rock. CJM method was carried out with PRD. After making concrete wall using Top-down method, earth anchors were installed for supporting it. According to the result of numerical analysis, as water level rises, wall is stable.

  • PDF

A component method model for blind-bolts with headed anchors in tension

  • Pitrakkos, Theodoros;Tizani, Walid
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1305-1330
    • /
    • 2015
  • The successful application of the component-based approach - widely used to model structural joints - requires knowledge of the mechanical properties of the constitutive joint components, including an appropriate assembly procedure to derive the joint properties. This paper presents a component-method model for a structural joint component that is located in the tension zone of blind-bolted connections to concrete-filled tubular steel profiles. The model relates to the response of blind-bolts with headed anchors under monotonic loading, and the blind-bolt is termed the "Extended Hollo-bolt". Experimental data is used to develop the model, with the data being collected in a manner such that constitutive models were characterised for the principal elements which contribute to the global deformability of the connector. The model, based on a system of spring elements, incorporates pre-load and deformation from various parts of the blind-bolt: (i) the internal bolt elongation; (ii) the connector's expanding sleeves element; and (iii) the connector's mechanical anchorage element. The characteristics of these elements are determined on the basis of piecewise functions, accounting for basic geometrical and mechanical properties such as the strength of the concrete applied to the tube, the connection clamping length, and the size and class of the blind-bolt's internal bolt. An assembly process is then detailed to establish the model for the elastic and inelastic behaviour of the component. Comparisons of model predictions with experimental data show that the proposed model can predict with sufficient accuracy the response of the component. The model furthers the development of a full and detailed design method for an original connection technology.

Temperature analysis of a long-span suspension bridge based on a time-varying solar radiation model

  • Xia, Qi;Liu, Senlin;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.23-35
    • /
    • 2020
  • It is important to take into account the thermal behavior in assessing the structural condition of bridges. An effective method of studying the temperature effect of long-span bridges is numerical simulation based on the solar radiation models. This study aims to develop a time-varying solar radiation model which can consider the real-time weather changes, such as a cloud cover. A statistical analysis of the long-term monitoring data is first performed, especially on the temperature data between the south and north anchors of the bridge, to confirm that temperature difference can be used to describe real-time weather changes. Second, a defect in the traditional solar radiation model is detected in the temperature field simulation, whereby the value of the turbidity coefficient tu is subjective and cannot be used to describe the weather changes in real-time. Therefore, a new solar radiation model with modified turbidity coefficient γ is first established on the temperature difference between the south and north anchors. Third, the temperature data of several days are selected for model validation, with the results showing that the simulated temperature distribution is in good agreement with the measured temperature, while the calculated results by the traditional model had minor errors because the turbidity coefficient tu is uncertainty. In addition, the vertical and transverse temperature gradient of a typical cross-section and the temperature distribution of the tower are also studied.

NEMO-enabled Hybrid Distributed Mobility Management (네트워크 이동성을 지원하는 하이브리드 분산 이동성 관리)

  • Wie, Sunghong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.1030-1040
    • /
    • 2018
  • In Distributed Mobility Management (DMM) protocol, the mobility functions are distributed to network edge closer to mobile users. DMM protocol has some advantages of low-cost traffic delivery, optimized routing path, high scalability. However, it needs many mobile anchors to exchange signaling messages and it results in a high signaling cost. Thus, previous works suggested the hybrid DMM protocol to reduce the high signaling cost for long-live sessions and this paper extends a hybrid scheme to the NEMO environment. The mobile routers are installed at vehicles and can move together with several mobile devices. So we can define the high-mobility property for mobile routers and suggest the hybrid scheme using this property. According to the high-mobility property of mobile routers, we can distribute the mobile anchors or allocate a centralized mobile anchor. In this paper, we mathematically analyze the performance of the proposed NEMO-enabled hybrid DMM protocol and show superior performance.

A Study of the Anchorage loss of Ground Anchor Using Spacing Apparatus and Spring for Soil Structure Stability (토구조물의 안정성 확보를 위한 정착력 손실 최소화 간격유지장치 어스앵커에 관한 연구)

  • Jeong, Sang-Min;Lee, Seong-Won;Yoo, Ji-Hyeung;Lee, Keun-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.2 s.21
    • /
    • pp.17-24
    • /
    • 2006
  • A ground anchor system is used as a load carrying element for soil structure stability The conventional systems with ground anchors bring about the anchorage loss of wedges when anchors are installed for the support of soil structures. Hence we developed the new type of anchor system using both the spacing apparatus and spring (length 60mm, diameter 6mm). In this system, we can directly check the condition of wedges and PS strands and modify the problems with the slip and anchorage of wedges under construction. For demonstrating the superiority of this system, we carried out a series of both laboratory and field test. Consequently, we can obtain satisfactory result (18.99% reduction to the loss of conventional systems). Moreover, the replacement of wedges is easy and simple when retensioning of strands.