• Title/Summary/Keyword: analytical hierarchy process

Search Result 250, Processing Time 0.025 seconds

Assessment of Safety Climate Metrics in Construction Safety Management (건설 안전관리를 위한 Safety Climate 평가요인별 중요도 분석 연구)

  • Han, Bum-Jin;Kim, Taehui;Son, Seunghyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.607-618
    • /
    • 2023
  • Pervasive research underscores the direct correlation between an enhanced safety climate and a marked reduction in accidents. The intricacies of safety climate are governed by three pivotal strata: organizational management, on-site operations, and the broader enterprise framework. Within an organizational context, sustaining optimal performance across these layers poses a considerable challenge, often attributable to the constraints of available managerial bandwidth. It becomes imperative, then, to conceive a phased enhancement blueprint for the safety climate. To orchestrate this blueprint with precision, a discerning understanding of the hierarchy of safety climate metrics is essential, which subsequently guides judicious managerial resource allocation. This investigation is anchored in elucidating the hierarchical significance of safety climate metrics through the Analytical Hierarchy Process(AHP). Implementing the AHP framework, both a questionnaire was disseminated and a subsequent analysis undertaken, culminating in the extraction of relative priorities of safety climate determinants. Consequent to this analysis, "workers' safety prioritization and risk aversion" emerged as the foremost dimension, holding a significance weight of 0.1900. Furthermore, within the detailed elements, "unwavering adherence to safety mandates amidst demanding operational constraints" ranked supreme, manifesting a weight of 0.6663. The findings encapsulated in this study are poised to be foundational in sculpting improvements at an institutional level and devising policies, all with the end goal of fostering an exemplar safety climate within construction arenas.

A Study on Establishing the Evaluation System of the Stock Enhancement Program (수산자원조성사업의 합리적인 평가체계 도입 방안에 관한 연구)

  • Kim, Dae-Young;Ryu, Jeoung-Gon;Lee, Jeoung-Sam
    • The Journal of Fisheries Business Administration
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2010
  • The main goal of the study is to propose an objective and standardized evaluation system of stock enhancement programs. In order to achieve this goal, the study first suggested the need for stock enhancement program evaluation system through the review of current status and problems. Second, the study identified possible problems of the existing stock enhancement program evaluation by reviewing domestic and foreign evaluation systems. Finally the study proposed a new evaluation system and implementation plan of it. This study also classified the program evaluation criteria into ex-ante evaluation and ex-post evaluation according to the evaluation point in time, and applied the economic, political and technical feasibility tests into the evaluation of the stock enhancement program in order to solve the current problems of the evaluation. The evaluation process of the stock enhancement program is composed of an evaluation system design, estimation of weights using the analytical hierarchy process, design of estimation standard, conversion of scores and final summary of the evaluation. The central government takes the lead in the evaluation of the regional (metropolitan city or province) projects and the regional government is in charge of the evaluation of the local (city or county) projects. For the implementation of the ex-ante evaluation, either the regional or local governments ask for the evaluation and then submit an evaluation plan and other necessary documents to the upper level governments. The ex-post evaluation is then carried out by the upper level governments.

On the Evaluation Algrithm of Hierarchical Process using $\lambda$-Fuzzy Integral (퍼지 적분을 도입한 계증구조 평가 알고리즘)

  • 여기태;노홍승;이철영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.97-106
    • /
    • 1996
  • One of the main problems in evaluating complex objects, such as an ill-defined system, is how to treat ambiguous aspect of the evaluation. Due to the Complexity and ambiguity of the objects, many types of evaluation attributes should be identified based on the rational dsision. One of these attributes is an analytical hierarchy process (AHP). the weight of evaluation attribtes in AHP however comes from the probability measure based on the additivity. Therefore, it is notapplicable to the objects which have the property of non-additivity. In the previous studies by other researchers they intriduced the Hierarchical Fuzzy Integral method or mergd AHP and fuzzy measure for the analysis of the overlaps among the evaluation objects. But, they need more anlyses in terms of transformation of the probability measure into fuzzy measure which fits for the additivity and overlapping coefficient which affects to the fuzzy measure. Considering these matters, this paper deals that, ⅰ) clarifying the relation between the fuzzy and probability measure adopted in AHP, ii) calculating directly the family of fuzzy measure from the overlapping coefficient and probability measure. A simple algorithm for the calculation of fuzzy measures and set family of those from the above results is also proposed. Finally, the effectiveness of the algorithm developed by applying this to the problems for estimation of safety in ship berthing and for evaluation of ports in competition is verified. This implied that the new algoritnm gives better description of the system evaluation.

  • PDF

Developing a Method to Define Mountain Search Priority Areas Based on Behavioral Characteristics of Missing Persons

  • Yoo, Ho Jin;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.293-302
    • /
    • 2019
  • In mountain accident events, it is important for the search team commander to determine the search area in order to secure the Golden Time. Within this period, assistance and treatment to the concerned individual will most likely prevent further injuries and harm. This paper proposes a method to determine the search priority area based on missing persons behavior and missing persons incidents statistics. GIS (Geographic Information System) and MCDM (Multi Criteria Decision Making) are integrated by applying WLC (Weighted Linear Combination) techniques. Missing persons were classified into five types, and their behavioral characteristics were analyzed to extract seven geographic analysis factors. Next, index values were set up for each missing person and element according to the behavioral characteristics, and the raster data generated by multiplying the weight of each element are superimposed to define models to select search priority areas, where each weight is calculated from the AHP (Analytical Hierarchy Process) through a pairwise comparison method obtained from search operation experts. Finally, the model generated in this study was applied to a missing person case through a virtual missing scenario, the priority area was selected, and the behavioral characteristics and topographical characteristics of the missing persons were compared with the selected area. The resulting analysis results were verified by mountain rescue experts as 'appropriate' in terms of the behavior analysis, analysis factor extraction, experimental process, and results for the missing persons.

Analysis of Key Success Factors for Building a Smart Supply Chain Using AHP (AHP를 이용한 스마트 공급망 구축을 위한 주요 성공요인 분석)

  • Cheol-Soo Park
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.1-15
    • /
    • 2023
  • With the advent of the Fourth Industrial Revolution, propelled by digital technology, we are transitioning into an era of hyperconnectivity, where everything and objects are becoming interconnected. A smart supply chain refers to a supply chain system where various sensors and RFID tags are attached to objects such as machinery and products used in the manufacturing and transportation of goods. These sensors and tags collect and analyze process data related to the products, providing meaningful information for operational use and decision-making in the supply chain. Before the spread of COVID-19, the fundamental principles of supply chain management were centered around 'cost minimization' and 'high efficiency.' A smart supply chain overcomes the linear delayed action-reaction processes of traditional supply chains by adopting real-time data for better decision-making based on information, providing greater transparency, and enabling enhanced collaboration across the entire supply chain. Therefore, in this study, a hierarchical model for building a smart supply chain was constructed to systematically derive the importance of key factors that should be strategically considered in the construction of a smart supply chain, based on the major factors identified in previous research. We applied AHP (Analytical Hierarchy Process) techniques to identify urgent improvement areas in smart SCM initiatives. The analysis results showed that the external supply chain integration is the most urgent area to be improved in smart SCM initiatives.

Developing Airport Safety Performance Indicators and Index - The Case of Incheon Airport Airside -

  • In Kie Na;Yu-Jin Choi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.103-118
    • /
    • 2023
  • An indicator system is an effective way to monitor ongoing safety status. Current aviation safety measurements account for many qualitative technical and lagging indicators. Conversely, quantitative and leading indicators have only a tiny proportion. This research added more quantitative leading indicators and reviewed them to harmonize lagging and leading indicators to measure airport safety and provide an index. The South Korean national gate, Incheon International Airport's indicators, were applied as primary data to verify this research practically. Then, examples from International and national authorities were reviewed and extracted for use. Fifty-five safety specialists participated in the focus group discussion and three rounds of the Delphi survey. Finally, 51 sub-indicators were newly chosen. After this process, weights for each indicator could be assigned using the AHP (Analytical Hierarchy Process) to provide an integrated index. The result of the simulation with newly added indicators in the past five years (2020-2022) reliable trend showed in indicators and integrated index. Moreover, this allows monitoring the status of the details of indicators and holistic insight. This study considered that it is more suitable for a single company or service provider to use it according to the exact situation than in a macro- and general-purpose at the country or regional level.

A Study on the Relative Importance of Each Criterion in the E-Journal Consortium Process Using AHP (AHP를 이용한 컨소시엄 기반 전자저널 업무의 요인별 중요도 분석 연구)

  • Park, Sungjae;Kim, Jayhoon;Lee, Yong-Gu
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.24 no.1
    • /
    • pp.229-247
    • /
    • 2013
  • The purpose of this study is to improve the effectiveness of the e-journal process in libraries and information organizations by identifying the relative priority of each criterion in the e-journal consortium. To identify criteria in the process, this study employed a content analysis of previous studies on e-journal and consortium. A total of 73 criteria were found, and these were classified into three categories and 21 sub-categories. Then, the relative weight of each criterion was calculated using an AHP technique. This technique is one of useful tools for collecting experts' opinions. The AHP findings indicated that the cost of the e-journal was the most important criterion in the e-journal consortium. This is followed in priority by users' needs, usage statistics, and others. Using these findings, librarians and information professionals might be able to identify priorities in the e-journal work process, and to improve the effectiveness of the process.

A Study on Selection of Proposed Waste Facilities Sites using Geographic Information System (지리정보체계를 이용한 일반폐기물 매립후보지의 입지선정에 관한 연구)

  • Bae, Min-Ki;Chang, Byung-Moon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.2
    • /
    • pp.14-25
    • /
    • 1998
  • The purpose of this paper is to select proposed waste facilities sites after consideration of relative importance of siting factors. From the literature review we have established the siting factors affecting selecting waste facilities sites, and constructed hierarchy of siting factors to evaluate the relative importance of the factors using Analytical Hierarchy Process(AHP). After mail surveying of expert group, we have analyzed the relative importance of siting factors affecting waste facilities. We have constructed Geographic Information System(GIS) of raster type, based on seventeen theme maps of siting factors on waste facilities, to select the proposed waste facilities sites after consideration of the relative importance of the siting factors for Gyongsan city, in Korea. After applying linear combination method, and factor combination method to overcome the methodological limitations of land suitability analysis, we have found five proposed sites, where intersected with proposed sites obtained from the two methods. From this research we have found that 1) methodologically, using GIS for selection of proposed waste facilities sites turned out to be highly useful, 2) application of relative importance of siting factors and two methods of land suitability analysis in selection of proposed waste facilities sites are pertinent enough to provide valid and reliable results, and 3) the research methods and approach employed in this research will be highly useful in site selection of other major facilities.

  • PDF

On the Evaluation of Physical Distribution Service in Ports (항만물류서비스의 평가에 관하여)

    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.17-29
    • /
    • 1996
  • It is required to consider pricing and non-pricing factors and external economy in order to achieve the objects of physical distribution system in a port. Recently, among the three factors, much attention has been paid to non-pricing factor in the system. Although physical distribution service in a port(PDSP)has been frequently mentioned in documents and literature related to port and shipping studies, few study on it has not been systematically and scientifically made due to the following problems; $\circ$ there are not proper criteria to evaluate level and quality of PDSP and as a result it is difficult to set up a unified standard for doing so. $\circ$ algorithms to evaluate problems with complex and ambiguous attributes and multiple levels in PDSP are not available. This thesis aims to establish a paradigm to evaluate PDSP and to abvance existing decision making methods to deal with complex and ambiguous problems in PDSP. To tackle the first purpose, extensive and thorough literature survey was carried out on general physical distribution service, which is a corner stone to handle PDSp. In addition, through interviews and questionnaire to the expert, it have extracted 82 factors of physical distribution service in a port. They have been classified into 6 groups by KJ method and each group defined by the expert's advice as follows; a. Potentiality b. Exactness c. safety d. Speediness e. Convenience f. Linkage Prior to the service evaluation, many kinds of its attributes must be identified on the basis of rational decision owing to complexity and ambiguity inherent in PDSP. An analytical hierarchy process (AHP) is a method to evaluate them but it is not applicable to PDSP that have property of non-additivity and overlapped attributes. Therefore, probablility measure can not be used to evaluate PDSP but fuzzy measure is required. Hierarchical fuzzy integral method, which is merged AHP with fuzzy measure, is also not effective method to evaluate attributes because it has vary complicated way to calculate fuzzy measure identification coefficient of attributes. A new evaluation algorithm has been introduced to solve problems with multi-attribute and multi-level hierarchy, which is called hierarchy fuzzy process(HFP).Analysis on ambiguous aspects of PDSP under study which is not easy to be defined is prerequisite to evaluate it. HFP is different from algorithm existed in that it clarified the relationship between fuzzy measure and probability measure adopted in AHP and that it directly calculates the family of fuzzy measure from overlapping coefficient and probability measure to treat and evaluate ambiguous and complex aspects of PDSP. A new evaluation algorithm HFP was applied to evaluate level of physical distribution service in the biggest twenty container port in the world. The ranks of the ports are as follows; 1. Rotterdam Port, 2. Hamburg Port, 3. Singapore Port, 4. Seattle Port, 5. Yokohama Port, 6. Long beach Port, 7. Oakland Port, 8. Tokyo Port, 9. Hongkong Port, 10. Kobe Port, 11. Los Angeles Port, 12. New york Port, 13. Antwerp Port, 14. Felixstowe Port, 15. Bremerhaven Port, 16. Le'Havre Port, 17. Kaoshung Port, 18. Killung Port, 19. Bangkok Port, 20. Pusan Port

  • PDF

Analysis of Landslide Hazard Area using Logistic Regression Analysis and AHP (Analytical Hierarchy Process) Approach (로지스틱 회귀분석 및 AHP 기법을 이용한 산사태 위험지역 분석)

  • Lee, Yong-jun;Park, Geun-Ae;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.861-867
    • /
    • 2006
  • The objective of this study is to analyze the landslide hazard areas by combining LRA (Lgistic Regression Analysis) and AHP (Analytic Hierarchy Program) methods with Remote Sensing and GIS data in Anseong-si. In order to classify landslide hazard areas of seven levels, six topographic factors (slope, aspect, elevation, soil drain, soil depth, and land use) were used as input factors of LRA and AHP methods. As results, high-risk areas for landslide (1 and 2 levels) by LRA and AHP of its own were classified as 46.1% and 48.7%, respectively. A new method by applying weighting factors to the results of LRA and AHP was suggested. High-risk areas for landslide (1 and 2 levels) form the new method was classified as 58.9%.