• Title/Summary/Keyword: analytical design

Search Result 2,976, Processing Time 0.03 seconds

Analytical solutions for skewed thick plates subjected to transverse loading

  • Chun, Pang-Jo;Fu, Gongkang;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.549-571
    • /
    • 2011
  • This paper presents analytical solutions for skewed thick plates under transverse loading that have previously been unreported in the literature. The thick plate solution is obtained in a framework of an oblique coordinate system. The governing equation is first derived in the oblique coordinate system, and the solution is obtained using deflection and rotation as partial derivatives of a potential function developed in this research. The solution technique is applied to three illustrative application examples, and the results are compared with numerical solutions in the literature and those derived from the commercial finite element analysis package ANSYS 11. These results are in excellent agreement. The present solution may also be used to model skewed structures such as skewed bridges, to facilitate efficient routine design or evaluation analyses, and to form special elements for finite element analysis. At the same time, the analytical solution developed in this research could be used to develop methods to address post-buckling and dynamic problems.

Development of a Simple Analytical Model for Desiccant Wheels-I. Approximate Solution of the Governing Equations (로터리 제습기의 단순 해석 모델 개발-I. 지배방정식의 근사적 해석)

  • Kim, Dong-Seon;Choi, Young-Don;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.821-827
    • /
    • 2011
  • A simple analytical model has been developed from the approximate solution of the governing equations for desiccant wheels. The model has been compared with a numerical twodimensional transient model and found capable of making realistic prediction. The analytical model will be further developed to provide simple effectiveness correlations which can be useful for the rough design or long-term simulation of the desiccant wheels in DEC systems.

Development of a General Analytical Model for Desiccant Wheels (로터리 제습기의 일반 해석 모델)

  • Kim, Dong-Seon;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.109-118
    • /
    • 2013
  • The absence of a simple and general analytical model has been a problem in the design and analysis of desiccant-assisted air-conditioning systems. In this study, such an analytical model has been developed based on the approximate integral solution of the coupled transient ordinary differential equations for the heat and mass transfer processes in a desiccant wheel. It turned out that the initial conditions should be determined by the solution of four linear algebraic equations including the heat and mass transfer equations for the air flow as well as the energy and mass conservation equations for the desiccant bed. It is also shown that time-averaged exit air temperature and humidity relations could be given in terms of the heat and mass transfer effectiveness.

Analytical Models to Predict Power Harvesting with Piezoelectric Transducer

  • Muppala, Raghava Raju;Raju, K. Padma;Moon, Nam-Mee;Jung, Baek-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • Advances in low power design open the possibility to harvest energy from the environment to power electronic circuits. Electrical energy can be harvested from piezoelectric transducer. Piezoelectric materials can be used as mechanisms to transfer mechanical energy usually vibrating system into electrical energy that can be stored and used to power other devices. Micro- to milli-watts power can be generated from vibrating system. We developed definitive and analytical models to predict the power generated from a cantilever beam attached with piezoelectric transducer. Analytical models are pin-force method, enhanced pin-force method and Euler-Bernoulli method. Harmonic oscillations and random noise will be the two different forcing functions used to drive each system. It has been selected the best model for generating electric power based upon the analytical results obtained.

Calculation of Winding Inductances for a Single-Phase Brushless DC Machine

  • Joo, Dae-Suk;Woo, Kyung-Il;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.196-199
    • /
    • 2012
  • This paper presents the analytical calculation of winding inductance for a single-phase brushless DC machine based on the magnetic circuit concept. The machine is used in the low power range of applications, such as ventilation fans, due to its simplicity and low cost. Since flux linkage is proportional to inductance, the calculation of winding inductance is of central importance. By comparison with experimental and analytical values, it is shown that proposed analytical expression is able to effectively predict the winding inductance of single-phase brushless DC machines at the design stage.

Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies

  • Mostafa, Mostafa M.A.;Wu, Tao;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.223-239
    • /
    • 2021
  • This paper presents the analytical modeling and finite element (FE) analysis, using ABAQUS software, of the new types of steel reinforced lightweight aggregate concrete (SRLAC) columns with cross-shaped (+shaped and X-shaped) steel section, using proposed three analytical and two FE models in total. The stress-strain material models for different components in the columns, including the confined zones of the lightweight aggregate concrete (LWAC) using three and four concrete zones divisions approaches and with and without taking into account the stirrups reaction effect, are established first. The analytical models for determining the axial load-deformation behavior of the SRLAC columns are drawn based on the materials models. The analytical and FE models' results are compared with previously reported test results of the axially loaded SRLAC columns. The proposed analytical and FE models accurately predict the axial behavior and capacities of the new types of SRLAC columns with acceptable agreements for the load-displacement curves. The LWAC strength, steel section ratio, and steel section configuration affect the contact stress between the concrete and steel sections. The average ratios of the ultimate test load to the three analytical models and FEA model loads, Put /Pa1, Put /Pa2, Put /Pa3, and Put /PFE1, for the tested specimens are 0.96, 1.004, 1.016, and 1.019, respectively. Finally, the analytical parametric studies are also studied, in terms of the effects of confinement, LWAC strength, steel section ratio, and the reinforcement ratio on the axial capacity of the SRLAC column. When concrete strength, confinements, area of steel sections, or reinforcement bars ratio increased, the axial capacities increased.

Process analytical technology (PAT): new paradigm for the state-of-the-art analytical technology (공정분석기술: 첨단 분석기술의 새로운 패러다임)

  • Kim, Jong-Yun;Park, Yong Joon;Yeon, Jei-Won;Woo, Young-Ah;Kim, Hyo-Jin;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.345-363
    • /
    • 2008
  • Process analytics has been already widely utilized in a large-scale continuous production line such as petroleum industries for several decades. Although the process analytics has a long history, a concept of "Process Analytical Technology (PAT)" has been rapidly adopted as a new paradigm for the process monitoring in the production process of various industries. In this review, current status and recent developments of PAT in various research bodies have been introduced, including the introduction of various types of analytical instruments, chemometrics tools, and perspectives and future applications of PAT as well as the fundamentals on PAT such as terminology and its historical background.

Experimental Investigation of Forced Air Cooled Plate Fin Heat Sinks (강제 공냉 평판형 핀 방열판에 대한 실험적 고찰)

  • Kim, Tae-Yeop
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.428-437
    • /
    • 2019
  • Analytical thermal models based on average convection heat transfer are frequently used for the design and selection of forced air-cooled plate fin heat sinks. In this paper, a convection heat transfer model within a ±10% margin of error was presented through experimental investigation. Five types of heat sinks with inlet widths of 1.7-6.8 mm were tested at 50-160 W heat sources to derive and verify the model. Causes of error between the experiment and analytical thermal model were analyzed and listed to design the heat sink. Using proposed method and the lists to be considered in the paper, a quick and accurate heat sink design of the power-conversion system is expected.

Rotor sleeve and Stator Shape Design of High Speed Permanent Magnet Synchronous Motor for Loss Reduction (손실 저감을 위한 초고속 영구자석 동기전동기의 회전자 슬리브와 고정자 형상 설계)

  • Jang, Seok-Myeong;Ahn, Ji-Hun;Ko, Kyoung-Jin;Cho, Han-Wook;Lee, Yong-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1073-1074
    • /
    • 2011
  • The loss is most important problems for the practical applications of permanent magnet synchronous motor(PMSM). In this paper, rotor sleeve and stator shape design of high speed permanent magnet motor for loss reduction. First, this paper found optimum sleeve thickness for calculation eddy current loss on the basis of analytical method, because eddy current is influenced by conductivity of material and area. Then, stator shape design is changed as maintain same slot area for reducing stator core loss. Finally, this paper compared analytical result with optimum sleeve thickness obtained from finite element(FE) method, and stator core loss is calculated from FE method.

  • PDF

Design of composite channel section beam for optimal dimensions (최적 단면 치수를 가지는 복합재료 U-Beam의 설계)

  • 이헌창;전흥재;박지상;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.276-279
    • /
    • 2002
  • A problem formulation and solution for design optimization of laminated composite channel section beam is presented in this study. The objective of this study is the determination of optimum section dimensions of composite laminated channel section beam which has equivalent flexural rigidities to flexural rigidities of steel channel section beam. The analytical model is based on the laminate theory and accounts for the material coupling for arbitrary laminate stacking sequence configuration. The model is used to determine the optimal section dimensions of composite channel section beam. The web height, flange width and thickness of the beam are treated as design variables. The solutions described are found using a global search algorithm, Genetic Algorithms (GA).

  • PDF