• 제목/요약/키워드: an orthotropic material

검색결과 132건 처리시간 0.018초

경계요소법(BEM)에 의한 복합재료의 응력확대계수 해석 (An Analysis of Stress Intensity Factors of Composite Materials by Boundary Element Method (BEM))

  • 이갑래;조상봉;최용식
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.179-189
    • /
    • 1991
  • 본 연구에서는 특성근이 같은 같은 경우의 기본해 유도에서 사용하였던 상사 방법을 이용하여, 균열끝 부근의 응력장과 변위장을 나타내고자 한다. 위의 해석을 바탕으로 개발한 프로그램의 정도에 대하여 검증하고, 이 프로그램을 복합재료 내의 균열 문제에 응용하여 응력확대계수에 관한 자료를 계산하고, 그 유용성을 검토하고자 한다.

An analytical solution for equations and the dynamical behavior of the orthotropic elastic material

  • Ramady, Ahmed;Atia, H.A.;Mahmoud, S.R.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.315-321
    • /
    • 2021
  • In this article, an analytical solution of the dynamical behavior in an orthotropic non-homogeneity elastic material using for elastodynamics equations is investigated. The effects of the magnetic field, the initial stress, and the non-homogeneity on the radial displacement and the corresponding stresses in an orthotropic material are investigated. The analytical solution for the elastodynamic equations has solved regarding displacements. The variation of the stresses, the displacement, and the perturbation magnetic field have shown graphically. Comparisons are made with the previous results in the absence of the magnetic field, the initial stress, and the non-homogeneity. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity.

Dynamical behavior of the orthotropic elastic material using an analytical solution

  • Balubaid, Mohammed;Abdo, H.;Ghandourah, E.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.331-339
    • /
    • 2021
  • In this work, an analytical solution is provided for the dynamical response of an orthotropic non-homogeneous elastic material. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity. The analytical performances for the elastodynamic equations has been solved regarding displacements. The influences of the rotation, the magnetic field, the non-homogeneity based radial displacement and the corresponding stresses in an orthotropic material are investigated. The variations of the stresses, the displacement, and the perturbation magnetic field have been illustrated. The comparisons is performed using the previous solutions in the magnetic field absence, the non-homogeneity and the rotation.

Position optimization of circular/elliptical cutout within an orthotropic rectangular plate for maximum buckling load

  • Choudhary, Prashant K.;Jana, Prasun
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.39-51
    • /
    • 2018
  • Position of a circular or elliptical cutout within an orthotropic plate has great influence on its buckling behavior. This paper aims at finding the optimal position (both location and orientation) of a single circular/elliptical cutout, within an orthotropic rectangular plate, that maximizes the critical buckling load. We consider linear buckling of simply supported orthotropic plates under uniaxial edge loads. To obtain the optimal positions of the cutouts, we have employed a MATLAB optimization routine coupled with buckling computation in ANSYS. Our results show that the position of the cutout that maximizes the buckling load has great dependence on the material properties, laminate configurations, and the geometrical parameters of the plate. These optimal results, for a number of plate geometries and cutout sizes, are reported in this paper. These results will be useful in the design of perforated orthotropic plates against buckling failure.

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • 제30권1호
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

2축하중을 받는 직교이방성재료 내 균열의 임계응력 (Critical Stress for a Crack in Orthotropic Material under Biaxial Loading)

  • 임원균;조형석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.37-42
    • /
    • 2003
  • The problem of an orthotropic material with a central crack is studied. The material is subjected to uniform biaxial loading along its boundary. The normal stress ratio theory is applied to predict fracture strength behavior in cracked orthotropic material. The dependence of the critical stress with respect to the biaxial loading and the crack orientation is discussed. Our analysis shows significant effects of biaxial loading on the critical stress. The additional tenn in the asymptotic expansion of the crack tip stress field appears to provide more accurate critical stress prediction.

  • PDF

계면균열을 갖는 반무한체에 접합된 직교이방성 층의 좌굴 (Buckling of an Orthotropic Layer Bonded to a Half-Space with an Interface Crack)

  • 정경문;범현규
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.95-103
    • /
    • 2001
  • The buckling of an orthotropic layer bonded to an orthotropic half-space with an interface crack subjected to compressive load under plane strain is analyzed. General solution to the stability equations describing the buckling behavior of both the layer and the half-space is expressed in terms of displacement functions. The displacement functions are represented by the solution of Cauchy-type singular integral equations, which are numerically solved. Numerical results of the critical buckling loads are presented fur various geometric parameters and material properties of both the layer and half-space.

  • PDF

경계 요소법에 의한 직교 이방성 다결정 재료의 응력해석에 관한 연구 (A Study of Stress Analysis of Multi-Grain Orthotropic Material by BEM)

  • 김동은;이상훈;정일중;이석순
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.127-133
    • /
    • 2008
  • As the application of the MEMS parts increases, the structural safety of MEMS appears importantly. A lot of MEMS parts are made by a multi-grain silicon wafer, which is an orthotropic material. Moreover directions of the materials on each grain are distributed randomly. The stress analysis for the multi-grain is important factor in order to apply the MEMS parts to industrial applications. The finite element method (FEM) is commonly used by a stress analysis method but the boundary element method (BEM) is known as the result of the BEM is more accurate than that of the FEM since the fundamental solution are used. In this study, we derived the boundary integration equation for the orthotropic material by applying fundamental solutions with complex variables. The multi-region analysis procedure for the BEM and the multi-grain generation procedure by a random process technique are developed in order to apply the analysis of the multi-grain orthotropic material. The discontinuous element is used in order to remove the comer problem in the BEM. The results of the present method are compared with those of the finite element method in order to verify the present procedure.

Numerical analysis of center cracked orthotropic fgm plate: Crack and material axes differ by θ°

  • Kaman, Mete Onur;Cetisli, Fatih
    • Steel and Composite Structures
    • /
    • 제13권2호
    • /
    • pp.187-206
    • /
    • 2012
  • In this study, fracture analysis of orthotropic FGM (Functionally Graded Material) plate having center crack is performed, numerically. Material axis arbitrarily oriented and there is an angle ${\theta}^{\circ}$ between material and crack axes. Stress intensity factors at the crack tips for Mode I are calculated using Displacement Correlation Method (DCM). In numerical analysis, effects of material properties and variation of angle ${\theta}^{\circ}$ between material and crack axes on the fracture behavior are investigated for four different boundary conditions. Consequently, it is found that the effect of ${\theta}^{\circ}$ on stress intensity factor depends on variation of material properties.

경계요소법에 의한 다결정 직교 이방성 재료의 유효 재료 상수의 계산 (Calculation of Effective Material Property for Multi-Grain Orthotropic Material by BEM)

  • 김동은;이상훈;정일중;이석순
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.713-719
    • /
    • 2008
  • Most of the MEMS parts are made of multi-grain silicon wafer, which is the orthotropic material and its material direction is arbitrary. The reliability of the parts must be guaranteed in order to use for the commercial usage. The need of the structural analysis of its parts emerges an important factor. The material properties of the MEMS parts are calculated by the numerical method in order to reduce a material test. In this study, the effective elastic modulus and its Poisson's ratio are calculated by the boundary element method(BEM) and are compared with the results by the finite element method(FEM).