• Title/Summary/Keyword: an opportunistic pathogen

Search Result 73, Processing Time 0.02 seconds

Molecular Pathogenesis of Vibrio vulnificus

  • Gulig Paul A.;Bourdage Keri L.;Starks Angela M.
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.118-131
    • /
    • 2005
  • Vibrio vulnificus is an opportunistic pathogen of humans that has the capability of causing rare, yet devastating disease. The bacteria are naturally present in estuarine environments and frequently contaminate seafoods. Within days of consuming uncooked, contaminated seafood, predisposed individuals can succumb to sepsis. Additionally, in otherwise healthy people, V. vulnificus causes wound infection that can require amputation or lead to sepsis. These diseases share the characteristics that the bacteria multiply extremely rapidly in host tissues and cause extensive damage. Despite the analysis of virulence for over 20 years using a combination of animal and cell culture models, surprisingly little is known about the mechanisms by which V. vulnificus causes disease. This is in part because of differences observed using animal models that involve infection with bacteria versus injection of toxins. However, the increasing use of genetic analysis coupled with detailed animal models is revealing new insight into the pathogenesis of V. vulnificus disease.

Increased Immunogenicity and Protective Efficacy of a P. aeruginosa Vaccine in Mice Using an Alum and De-O-Acylated Lipooligosaccharide Adjuvant System

  • Ryu, Ji In;Wui, Seo Ri;Ko, Ara;Do, Hien Thi Thu;Lee, Yeon Jeong;Kim, Hark Jun;Rhee, Inmoo;Park, Shin Ae;Kim, Kwang Sung;Cho, Yang Je;Lee, Na Gyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1539-1548
    • /
    • 2017
  • Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that commonly causes fatal infections in cystic fibrosis and burn patients as well as in patients who are hospitalized or have impaired immune systems. P. aeruginosa infections are difficult to treat owing to the high resistance of the pathogen to conventional antibiotics. Despite several efforts, no effective prophylactic vaccines against P. aeruginosa are currently available. In this study, we investigated the activity of the CIA06 adjuvant system, which is composed of alum and de-O-acylated lipooligosaccharide, on a P. aeruginosa outer membrane protein (OMP) antigen vaccine in mice. The results indicated that CIA06 significantly increased the antigen-specific IgG titers and opsonophagocytic activity of immune sera against P. aeruginosa. In addition, the antibodies induced by the CIA06-adjuvanted vaccine exhibited higher cross-reactivity with heterologous P. aeruginosa strains. Finally, mice immunized with the CIA06-adjuvanted vaccine were effectively protected from lethal P. aeruginosa challenge. Based on these data, we suggest that the CIA06 adjuvant system might be used to promote the immunogenicity and protective efficacy of the P. aeruginosa OMP vaccine.

A Case of Nocardia farcinica Pneumonia and Mediastinitis in an Immunocompetent Patient

  • Kim, Jinyoung;Kang, Minkyu;Kim, Juri;Jung, Sohee;Park, Junhung;Lee, Dongkyu;Yoon, Heejung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.2
    • /
    • pp.101-103
    • /
    • 2016
  • Nocardia species are aerobic, gram-positive pathogens found worldwide in soil. Nocardia is considered an opportunistic pathogen, and its infection mostly occurs in immunocompromised patients. We report a case of Nocardia farcinica induced mediastinitis and pneumonia that occurred in a 64-year-old male patient who had no significant medical history except for hypertension. He visited another hospital with a complaint of dyspnea and left chest wall pain. The symptoms arose 7 days ago without any trauma and they worsened. A mediastinal mass was found on computed tomography scan. After being transferred to our hospital for further evaluation, he was diagnosed with mediastinitis and pneumonia. As N. farcinica was found to be the causative organism by 16S rRNA sequencing, proper antibiotic therapy including trimethoprim/sulfamethoxazole was initiated immediately. After this, the patient improved and he was discharged. If an infection has a disseminating course, nocardiosis cannot be excluded even in immunocompetent patients. Once the diagnosis is established, prompt antibiotic therapy should be performed based on the severity.

Identification of Pseudomonas aeruginosa Genes Crucial for Hydrogen Peroxide Resistance

  • Choi, Young-Seok;Shin, Dong-Ho;Chung, In-Young;Kim, Seol-Hee;Heo, Yun-Jeong;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1344-1352
    • /
    • 2007
  • An opportunistic human pathogen, Pseudomonas aeruginosa, contains the major catalase KatA, which is required to cope with oxidative and osmotic stresses. As an attempt to uncover the $H_2O_2$-dependent regulatory mechanism delineating katA gene expression, four prototrophic $H_2O_2$-sensitive mutants were isolated from about 1,500 TnphoA mutant clones of P. aeruginosa strain PA14. Arbitrary PCR and direct cloning of the transposon insertion sites revealed that one insertion is located within the katA coding region and two are within the coding region of oxyR, which is responsible for transcriptional activation of several antioxidant enzyme genes in response to oxidative challenges. The fourth insertion was within PA3815 (IscR), which encodes a homolog of the Escherichia coli iron-sulfur assembly regulator, IscR. The levels of catalase and SOD activities were significantly reduced in the iscR mutant, but not in the oxyR mutant, during the normal planktonic culture conditions. These results suggest that both IscR and OxyR are required for the optimal resistance to $H_2O_2$, which involves the expression of multiple antioxidant enzymes including KatA.

Analysis of Class 1 Integrons in Imipenem-resistant Pseudomonas aeruginosa

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.2
    • /
    • pp.68-74
    • /
    • 2011
  • Pseudomonas aeruginosa is an aerobic, Gram-negative, glucose-nonfermenting bacterium, which has emerged as a serious opportunistic pathogen. Recently, outbreaks of carbapenem resistant P. aeruginosa give rise to significant therapeutic challenges for treating nosocomial infections. The genes of metallo-${\beta}$-lactamase (MBL), a powerful carbapenemase, are carried as a part of the mobile gene cassettes inserted into integrons playing an important role in rapid dissemination of antibiotic resistance genes among bacterial isolates. In this study, we investigated the prevalence of integron in imipenem resistant P. aeruginosa isolates. A total of 61 consecutive, non-duplicate, and imipenem resistant P. aeruginosa strains were isolated from a university hospital in the Chungcheong province of Korea. We employed repetitive extragenic palindromic sequence-based PCR (rep-PCR) method for the selection of clonally different P. aerusinosa strains. PCR and DNA sequencing were conducted for the detection of integrons. Twenty-one clonally different P. aeruginosa strains were isolated. Only one (P28) of the strains harbored $bla_{VIM-2}$ that was found as gene cassettes in class 1 integrons. Four of 21 carbapenem resistant P. aeruginosa strains harbored class 1 integron containing aminoglycoside resistance determinant. All of the integrons detected in the study contained more than one resistance gene cassette, which can mediate resistance to multiple antibiotics. To prevent further spreading of the multi-drug resistant P. aeruginosa, conseguent monitoring and clinical polices are required.

  • PDF

Genomic Tandem Quadruplication is Associated with Ketoconazole Resistance in Malassezia pachydermatis

  • Kim, Minchul;Cho, Yong-Joon;Park, Minji;Choi, Yoojeong;Hwang, Sun Young;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1937-1945
    • /
    • 2018
  • Malassezia pachydermatis is a commensal yeast found on the skin of dogs. However, M. pachydermatis is also considered an opportunistic pathogen and is associated with various canine skin diseases including otitis externa and atopic dermatitis, which usually require treatment using an azole antifungal drug, such as ketoconazole. In this study, we isolated a ketoconazole-resistant strain of M. pachydermatis, designated "KCTC 27587," from the external ear canal of a dog with otitis externa and analyzed its resistance mechanism. To understand the mechanism underlying ketoconazole resistance of the clinical isolate M. pachydermatis KCTC 27587, the whole genome of the yeast was sequenced using the PacBio platform and was compared with M. pachydermatis type strain CBS 1879. We found that a ~84-kb region in chromosome 4 of M. pachydermatis KCTC 27587 was tandemly quadruplicated. The quadruplicated region contains 52 protein coding genes, including the homologs of ERG4 and ERG11, whose overexpression is known to be associated with azole resistance. Our data suggest that the quadruplication of the ~84-kb region may be the cause of the ketoconazole resistance in M. pachydermatis KCTC 27587.

Complete genome sequence of Cutibacterium acnes KCOM 1861 isolated from a human jaw osteomyelitis lesion (사람 악골 골수염에서 분리된 Cutibacterium acnes KCOM 1861의 유전체 염기서열 해독)

  • Park, Soon-Nang;Roh, Hanseong;Lim, Yun Kyong;Kook, Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.126-128
    • /
    • 2017
  • Cutibacterium acnes (formerly Propionibacterium acnes) is an anaerobic, Gram-positive rod and that is a normal flora of human skin and mucosal surface as well as an opportunistic pathogen related to acnes vulgaris, sarcoidosis, brain abscess, endocarditis, periodontitis, and endodontic infections. C. acnes KCOM 1861 (= ChDC B594) was isolated from a human jaw osteomyelitis lesion. Here, we present the complete genome sequence of C. acnes KCOM 1861.

Draft genome sequence of lytic bacteriophage CF1 infecting Citrobacter freundii isolates (Citrobacter freundii 분리주를 감염시키는 용균 박테리오파지 CF1의 유전체 염기서열 초안)

  • Kim, Youngju;Ko, Seyoung;Yeon, Young Eun;Lim, Jaewon;Han, Beom Ku;Kim, Hyunil;Ahn, Jeong Keun;Kim, Donghyuk
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.79-80
    • /
    • 2018
  • Citrobacter freundii is a facultative anaerobic and a Gram-negative bacterium of Enterobacteriaceae family, and is an opportunistic pathogen. Bacteriophages infecting C. freundii can be an effective treatment for C. freundii infections. Here, the complete genomic sequence is announced for a lytic bacteriophage CF1 infecting C. freundii isolates.

Differentially Expressed Gene Profile of Acanthamoeba castellanii Induced by an Endosymbiont Legionella pneumophila

  • Moon, Eun-Kyung;Park, So-Min;Chu, Ki-Back;Quan, Fu-Shi;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.67-76
    • /
    • 2021
  • Legionella pneumophila is an opportunistic pathogen that survives and proliferates within protists such as Acanthamoeba spp. in environment. However, intracellular pathogenic endosymbiosis and its implications within Acanthamoeba spp. remain poorly understood. In this study, RNA sequencing analysis was used to investigate transcriptional changes in A. castellanii in response to L. pneumophila infection. Based on RNA sequencing data, we identified 1,211 upregulated genes and 1,131 downregulated genes in A. castellanii infected with L. pneumophila for 12 hr. After 24 hr, 1,321 upregulated genes and 1,379 downregulated genes were identified. Gene ontology (GO) analysis revealed that L. pneumophila endosymbiosis enhanced hydrolase activity, catalytic activity, and DNA binding while reducing oxidoreductase activity in the molecular function (MF) domain. In particular, multiple genes associated with the GO term 'integral component of membrane' were downregulated during endosymbiosis. The endosymbiont also induced differential expression of various methyltransferases and acetyltransferases in A. castellanii. Findings herein are may significantly contribute to understanding endosymbiosis of L. pneumophila within A. castellanii.

Evaluation of the EtOAc Extract of Lemongrass (Cymbopogon citratus) as a Potential Skincare Cosmetic Material for Acne Vulgaris

  • Kim, Chowon;Park, Jumin;Lee, Hyeyoung;Hwang, Dae-Youn;Park, So Hae;Lee, Heeseob
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.594-601
    • /
    • 2022
  • This study evaluated the biological properties of lemongrass (Cymbopogon citratus) extracts. The EtOAc extract of lemongrass had DPPH, TEAC, and nitric oxide-scavenging activity assay results of 58.06, 44.14, and 41.08% at the concentration of 50, 10, and 50 ㎍/ml, respectively. The EtOAc extract had higher elastase and collagenase inhibitory activities than the 80% MeOH, n-hexane, BuOH, and water extracts and comparable whitening activity toward monophenolase or diphenolase. Also, the EtOAc fraction had higher lipase inhibitory and antimicrobial activities against Cutibacterium acnes among extracts which is known to an important contributor to the progression of inflammatory acne vulgaris, and an opportunistic pathogen present in human skin. Total phenolic and flavonoid concentrations in the EtOAc extract were 132.31 mg CAE/g extract and 104.50 mg NE/g extract, respectively. Biologically active compounds in lemongrass extracts were analyzed by LC-MS. This study confirms that lemongrass extracts have potential use as cosmetic skincare ingredients. Thus, lemongrass can be considered a promising natural source of readily available, low-cost extracts rich in antioxidant, skincare, and antimicrobial compounds that might be suitable for replacing synthetic compounds in the cosmeceutical industry.