Browse > Article
http://dx.doi.org/10.4014/jmb.1810.10019

Genomic Tandem Quadruplication is Associated with Ketoconazole Resistance in Malassezia pachydermatis  

Kim, Minchul (Department of Systems Biotechnology, Chung-Ang University)
Cho, Yong-Joon (Korea Polar Research Institute)
Park, Minji (Department of Systems Biotechnology, Chung-Ang University)
Choi, Yoojeong (Department of Systems Biotechnology, Chung-Ang University)
Hwang, Sun Young (Haemaru Small Animal Research Institute)
Jung, Won Hee (Department of Systems Biotechnology, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.11, 2018 , pp. 1937-1945 More about this Journal
Abstract
Malassezia pachydermatis is a commensal yeast found on the skin of dogs. However, M. pachydermatis is also considered an opportunistic pathogen and is associated with various canine skin diseases including otitis externa and atopic dermatitis, which usually require treatment using an azole antifungal drug, such as ketoconazole. In this study, we isolated a ketoconazole-resistant strain of M. pachydermatis, designated "KCTC 27587," from the external ear canal of a dog with otitis externa and analyzed its resistance mechanism. To understand the mechanism underlying ketoconazole resistance of the clinical isolate M. pachydermatis KCTC 27587, the whole genome of the yeast was sequenced using the PacBio platform and was compared with M. pachydermatis type strain CBS 1879. We found that a ~84-kb region in chromosome 4 of M. pachydermatis KCTC 27587 was tandemly quadruplicated. The quadruplicated region contains 52 protein coding genes, including the homologs of ERG4 and ERG11, whose overexpression is known to be associated with azole resistance. Our data suggest that the quadruplication of the ~84-kb region may be the cause of the ketoconazole resistance in M. pachydermatis KCTC 27587.
Keywords
Malassezia pachydermatis; genomic quadruplication; ketoconazole; antifungal; resistance; dog;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Co le LK, Luu DH, Rajala-Schultz PJ, Meadows C, Torres AH. 2007. In vitro activity of an ear rinse containing tromethamine, EDTA, benzyl alcohol and 0.1% ketoconazole on Malassezia organisms from dogs with otitis externa. Vet. Dermatol. 18: 115-119.   DOI
2 Yoshida Y, Aoyama Y. 1987. Interaction of azole antifungal agents with cytochrome P-45014DM purified from Saccharomyces cerevisiae microsomes. Biochem. Pharmacol. 36: 229-235.   DOI
3 Truan G, Epinat JC, Rougeulle C, Cullin C, Pompon D. 1994. Cloning and characterization of a yeast cytochrome b5-encoding gene which suppresses ketoconazole hypersensitivity in a NADPH-P-450 reductase-deficient strain. Gene 142: 123-127.   DOI
4 Jesus FP, Lautert C, Zanette RA, Mahl DL, Azevedo MI, Machado ML, et al. 2011. In vitro susceptibility of fluconazole-susceptible and -resistant isolates of Malassezia pachydermatis against azoles. Vet. Microbiol. 152: 161-164.   DOI
5 Wa tanabe S, Koike A, Kano R, Nagata M, Chen C, Hwang CY, et al. 2014. In vitro susceptibility of Malassezia pachydermatis isolates from canine skin with atopic dermatitis to ketoconazole and itraconazole in East Asia. J. Vet. Med. Sci. 76: 579-581.   DOI
6 Iatta R, Puttilli MR, Immediato D, Otranto D, Cafarchia C. 2017. The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles. Mycoses 60: 178-182.   DOI
7 M idgley G. 1989. The diversity of Pityrosporum (Malassezia) yeasts in vivo and in vitro. Mycopathologia 106: 143-153.   DOI
8 Wayne P. 2008. Clinical and Laboratory Standards Institute: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-; CLSI document M27-A3.
9 Walsh PS, Metzger DA, Higuchi R. 2013. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 54: 134-139.
10 Gupta AK, Boekhout T, Theelen B, Summerbell R, Batra R. 2004. Identification and typing of Malassezia species by amplified fragment length polymorphism and sequence analyses of the internal transcribed spacer and large-subunit regions of ribosomal DNA. J. Clin. Microbiol. 42: 4253-4260.   DOI
11 Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34: 2115-2122.   DOI
12 van Burik JA, Schreckhise RW, White TC, Bowden RA, Myerson D. 1998. Comparison of six extraction techniques for isolation of DNA from filamentous fungi. Med. Mycol. 36: 299-303.   DOI
13 Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27: 722-736.   DOI
14 Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. 2016. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32: 767-769.   DOI
15 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.   DOI
16 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}$CT method. Methods 25: 402-408.   DOI
17 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.   DOI
18 Liao Y, Smyth GK, Shi W. 2014. Feature counts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923-930.   DOI
19 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550.   DOI
20 da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, Malavazi I, Perlin D, Park S, et al. 2004. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob. Agents Chemother. 48: 4405-4413.   DOI
21 Gerwien F, Safyan A, Wisgott S, Brunke S, Kasper L, Hube B. 2017. The fungal pathogen Candida glabrata does not depend on surface ferric reductases for iron acquisition. Front. Microbiol. 8:1055.   DOI
22 Hu G, Wang J, Choi J, Jung WH, Liu I, Litvintseva AP, et al. 2011. Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients. BMC Genomics 12: 526.   DOI
23 Sionov E, Lee H, Chang YC, Kwon-Chung KJ. 2010. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 6: e1000848.   DOI
24 Feng W, Yang J, Xi Z, Qiao Z, Lv Y, Wang Y, et al. 2017. Mutations and/or overexpressions of ERG4 and ERG11 genes in clinical azoles-resistant isolates of Candida albicans. Microb. Drug Resist. 23: 563-570.   DOI
25 M cBride DJ, Etemadmoghadam D, Cooke SL, Alsop K, George J, Butler A, et al. 2012. Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes. J. Pathol. 227: 446-455.   DOI
26 Saikia S, Oliveira D, Hu G, Kronstad J. 2014. Role of ferric reductases in iron acquisition and virulence in the fungal pathogen Cryptococcus neoformans. Infect. Immun. 82: 839-850.   DOI
27 Koszul R, Caburet S, Dujon B, Fischer G. 2004. Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J. 23: 234-243.   DOI
28 Koszul R, Dujon B, Fischer G. 2006. Stability of large segmental duplications in the yeast genome. Genetics 172: 2211-2222.   DOI
29 Mehra RK, Garey JR, Winge DR. 1990. Selective and tandem amplification of a member of the metallothionein gene family in Candida glabrata. J. Biol. Chem. 265: 6369-6375.
30 Aladjem MI, Koltin Y, Lavi S. 1988. Enhancement of copper resistance and CupI amplification in carcinogen-treated yeast cells. Mol. Gen. Genet. 211: 88-94.   DOI
31 Negre A, Bensignor E, Guillot J. 2009. Evidence-based veterinary dermatology: a systematic review of interventions for Malassezia dermatitis in dogs. Vet. Dermatol. 20: 1-12.   DOI
32 Hi ll PB, Lo A, Eden CA, Huntley S, Morey V, Ramsey S, et al. 2006. Survey of the prevalence, diagnosis and treatment of dermatological conditions in small animals in general practice. Vet. Rec. 158: 533-539.   DOI
33 Saridomiche lakis MN, Farmaki R, Leontides LS, Koutinas AF. 2007. Aetiology of canine otitis externa: a retrospective study of 100 cases. Vet. Dermatol. 18: 341-347.   DOI
34 Korbelik J, Singh A, Rousseau J, Weese JS. 2018. Analysis of the otic mycobiota in dogs with otitis externa compared to healthy individuals. Vet. Dermatol. 29: 417-e138.   DOI
35 I lahi A, Hadrich I , Goudjil S, Kongolo G, Chazal C, Leke A, et al. 2018. Molecular epidemiology of a Malassezia pachydermatis neonatal unit outbreak. Med. Mycol. 56: 69-77.   DOI
36 Chryssanthou E, Broberger U, Petrini B. 2001. Malassezia pachydermatis fungaemia in a neonatal intensive care unit. Acta Paediatr. 90: 323-327.   DOI
37 Bajwa J. 2017. Canine Malassezia dermatitis. Can. Vet. J. 58: 1119-1121.