Browse > Article

Identification of Pseudomonas aeruginosa Genes Crucial for Hydrogen Peroxide Resistance  

Choi, Young-Seok (Department of Life Science, Sogang University)
Shin, Dong-Ho (Department of Life Science, Sogang University)
Chung, In-Young (Department of Life Science, Sogang University)
Kim, Seol-Hee (Department of Life Science, Sogang University)
Heo, Yun-Jeong (Department of Life Science, Sogang University)
Cho, You-Hee (Department of Life Science, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.8, 2007 , pp. 1344-1352 More about this Journal
Abstract
An opportunistic human pathogen, Pseudomonas aeruginosa, contains the major catalase KatA, which is required to cope with oxidative and osmotic stresses. As an attempt to uncover the $H_2O_2$-dependent regulatory mechanism delineating katA gene expression, four prototrophic $H_2O_2$-sensitive mutants were isolated from about 1,500 TnphoA mutant clones of P. aeruginosa strain PA14. Arbitrary PCR and direct cloning of the transposon insertion sites revealed that one insertion is located within the katA coding region and two are within the coding region of oxyR, which is responsible for transcriptional activation of several antioxidant enzyme genes in response to oxidative challenges. The fourth insertion was within PA3815 (IscR), which encodes a homolog of the Escherichia coli iron-sulfur assembly regulator, IscR. The levels of catalase and SOD activities were significantly reduced in the iscR mutant, but not in the oxyR mutant, during the normal planktonic culture conditions. These results suggest that both IscR and OxyR are required for the optimal resistance to $H_2O_2$, which involves the expression of multiple antioxidant enzymes including KatA.
Keywords
Pseudomonas aeruginosa; KatA; OxyR; IscR; $H_2O_2$; catalase; SOD;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Kanazawa, Y. and T. Kuramata. 1966. A simple method for determination of ability of bacteria to inactivate chemotherapeutics using sensitivity disc. J. Antibiot. (Tokyo) 19: 272-277
2 Manoil, C. and J. Beckwith. 1985. TnphoA: A transposon probe for protein export signals. Proc. Natl. Acad. Sci. USA 82: 8129-8133
3 Ochsner, U. A., M. L. Vasil, E. Alsabbagh, K. Parvatiyar, and D. J. Hassett. 2000. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J. Bacteriol. 182: 4533-4544   DOI   ScienceOn
4 Sambrook, J., E. F. Fritsh, and T. Maniatis. 2001. Molecular Cloning; A Laboratory Manual, 3rd Ed. Laboratory Press, Cold Spring Harbor, N.Y
5 Storz, G. and L. A. Tartaglia. 1992. OxyR: A regulator of antioxidant genes. J. Nutr. 122: 627-630   DOI
6 Yang, H. Y., H. S. Lee, J. H. Ko, S. W. Yeon, T. Y. Kim, B. Y. Hwang, S. S. Kang, J. Chun, and S. K. Hong. 2006. Identification of 3'-hydroxymelanetin and liquiritigenin as akt protein kinase inhibitors. J. Microbiol. Biotechnol. 16: 1384-1391   과학기술학회마을
7 Yorgey, P., L. G. Rahme, M. W. Tan, and F. M. Ausubel. 2001. The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol. Microbiol. 41: 1063-1076   DOI   ScienceOn
8 Aslund, F., M. Zheng, J. Beckwith, and G. Storz. 1999. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl. Acad. Sci. USA 96: 6161-6165
9 Christman, M. F., G. Storz, and B. N. Ames. 1989. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc. Natl. Acad. Sci. USA 86: 3484-3488
10 Heo, Y.-J., S.-K. Kwan, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages of various Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 15: 1369-1376
11 Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86   DOI   ScienceOn
12 Hogan, D. A. and R. Kolter. 2002. Pseudomonas-Candida interactions: An ecological role for virulence factors. Science 296: 2229-2232   DOI   ScienceOn
13 Newman, J. R. and C. Fuqua. 1999. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227: 197-203   DOI   ScienceOn
14 O'Toole, G. A., L. A. Pratt, P. I. Watnick, D. K. Newman, V. B. Weaver, and R. Kolter. 1999. Genetic approaches to study of biofilms. Methods Enzymol. 310: 91-109   DOI
15 Park, S.-Y., Y.-J. Heo, Y.-S. Choi, E. Déziel, and Y.-H. Cho. 2005. Conserved virulence factors of Pseudomonas aeruginosa are required for killing Bacillus subtilis. J. Microbiol. 43: 443-450   과학기술학회마을
16 Hassett, D. J. and M. S. Cohen. 1989. Bacterial adaptation to oxidative stress: Implications for pathogenesis and interaction with phagocytic cells. FASEB J. 3: 2574-2582   DOI
17 Lau, G. W., B. E. Britigan, and D. J. Hassett. 2005. Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. Infect. Immun. 73: 2550- 2553   DOI   ScienceOn
18 Miller, J. H. 1992. A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
19 Simon, R., U. Priefer, and A. Pühler. 1983. A broad host range mobilization for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Biotechnology 28: 37-45
20 Schweizer, H. P. 1991. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97: 109-121   DOI   ScienceOn
21 Kang, Y. S., Y. J. Kim, C. O. Jeon, and W. J. Park. 2006. Characterization of naphthalene-degrading Pseudomonas species isolated from pollutant-contaminated sites: Oxidative stress during their growth on naphthalene. J. Microbiol. Biotechnol. 16: 1819-1825   과학기술학회마을
22 Rahme, L. G., E. J. Stevens, S. F. Wolfort, J. Shao, R. G. Tompkins, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902   DOI
23 Jamet, A., E. Kiss, J. Batut, A. Puppo, and D. Herouart. 2005. The katA catalase gene is regulated by OxyR in both free-living and symbiotic Sinorhizobium meliloti. J. Bacteriol. 187: 376-378   DOI   ScienceOn
24 Ha, U. H., Y. Wang, and S. Jin. 2003. DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect. Immun. 71: 1590-1595   DOI   ScienceOn
25 Halliwell, B. and J. M. Gutteridge. 1990. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 280: 1-8   DOI   ScienceOn
26 Rahme, L. G., M. W. Tan, L. Le, S. M. Wong, R. G. Tompkins, S. B. Calderwood, and F. M. Ausubel. 1997. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 94: 13245-13250
27 Hassett, D. J., E. Alsabbagh, K. Parvatiyar, M. L. Howell, R. W. Wilmott, and U. A. Ochsner. 2000. A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J. Bacteriol. 182: 4557-4563   DOI   ScienceOn
28 Mongkolsuk, S., W. Panmanee, S. Atichartpongkul, P. Vattanaviboon, W. Whangsuk, M. Fuangthong, W. Eiamphungporn, R. Sukchawalit, and S. Utamapongchai. 2002. The repressor for an organic peroxide-inducible operon is uniquely regulated at multiple levels. Mol. Microbiol. 44: 793-802   DOI   ScienceOn
29 Seib, K. L., H. J. Wu, S. P. Kidd, M. A. Apicella, M. P. Jennings, and A. G. McEwan. 2006. Defenses against oxidative stress in Neisseria gonorrhoeae: A system tailored for a challenging environment. Microbiol. Mol. Biol. Rev. 70: 344-361   DOI   ScienceOn
30 Gant, T. W., D. N. Rao, R. P. Mason, and G. M. Cohen. 1988. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem. Biol. Interact. 65: 157-173   DOI   ScienceOn
31 Zheng, M. and G. Storz. 2000. Redox sensing by prokaryotic transcription factors. Biochem. Pharmacol. 59: 1-6   DOI   ScienceOn
32 Schell, M. A. 1993. Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47: 597-626   DOI   ScienceOn
33 Schwartz, C. J., J. L. Giel, T. Patschkowski, C. Luther, F. J. Ruzicka, H. Beinert, and P. J. Kiley. 2001. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. USA 98: 14895-14900
34 Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-287   DOI   ScienceOn
35 Choi, K. H., A. Kumar, and H. P. Schweizer. 2006. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods 64: 391-397   DOI   ScienceOn
36 Farr, S. B. and T. Kogoma. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55: 561-585
37 Wayne, L. G. and G. A. Diaz. 1986. A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal. Biochem. 157: 89-92   DOI   ScienceOn
38 Taylor, R. K., C. Manoil, and J. J. Mekalanos. 1989. Broadhost- range vectors for delivery of TnphoA: Use in genetic analysis of secreted virulence determinants of Vibrio cholerae. J. Bacteriol. 171: 1870-1878   DOI
39 Brown, S. M., M. L. Howell, M. L. Vasil, A. J. Anderson, and D. J. Hassett. 1995. Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: Purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J. Bacteriol. 177: 6536- 6544   DOI
40 Lee, J.-S., Y.-J. Heo, J. K. Lee, and Y.-H. Cho. 2005. KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73: 4399-4403   DOI   ScienceOn
41 Zheng, M., F. Åslund, and G. Storz. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 1655-1656   DOI
42 Bodey, G. P., R. Bolivar, V. Fainstein, and L. Jadeja. 1983. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis. 5: 279-313   DOI
43 Montgomery, K. T., G. Grills, L. Li, W. A. Brown, J. Decker, R. Elliot, et al. 2002. Pseudomonas aeruginosa strain UCBPP-PA14 whole genome shotgun sequencing project. Direct submission. Accession numbers AABQ06000000- AABQ06000008
44 Xu, B., Y. J. Yang, and Z. X. Huang. 2006. Cloning and overexpression of gene encoding the pullulanase from Bacillus naganoensis in Pichia pastoris. J. Microbiol. Biotechnol. 16: 1185-1191   과학기술학회마을
45 Okura, M., R. Osawa, A. Iguchi, E. Arakawa, J. Terajima, and H. Watanabe. 2003. Genotypic analyses of Vibrio parahaemolyticus and development of a pandemic group specific multiplex PCR assay. J. Clin. Microbiol. 41: 4676- 4682   DOI   ScienceOn
46 Mahajan-Miklos, S., M. W. Tan, L. G. Rahme, and F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96: 47-56   DOI   ScienceOn