Browse > Article
http://dx.doi.org/10.3347/kjp.2021.59.1.67

Differentially Expressed Gene Profile of Acanthamoeba castellanii Induced by an Endosymbiont Legionella pneumophila  

Moon, Eun-Kyung (Department of Medical Zoology, Kyung Hee University School of Medicine)
Park, So-Min (Department of Biomedical Science, Graduate School, Kyung Hee University)
Chu, Ki-Back (Department of Biomedical Science, Graduate School, Kyung Hee University)
Quan, Fu-Shi (Department of Medical Zoology, Kyung Hee University School of Medicine)
Kong, Hyun-Hee (Department of Parasitology, Dong-A University College of Medicine)
Publication Information
Parasites, Hosts and Diseases / v.59, no.1, 2021 , pp. 67-76 More about this Journal
Abstract
Legionella pneumophila is an opportunistic pathogen that survives and proliferates within protists such as Acanthamoeba spp. in environment. However, intracellular pathogenic endosymbiosis and its implications within Acanthamoeba spp. remain poorly understood. In this study, RNA sequencing analysis was used to investigate transcriptional changes in A. castellanii in response to L. pneumophila infection. Based on RNA sequencing data, we identified 1,211 upregulated genes and 1,131 downregulated genes in A. castellanii infected with L. pneumophila for 12 hr. After 24 hr, 1,321 upregulated genes and 1,379 downregulated genes were identified. Gene ontology (GO) analysis revealed that L. pneumophila endosymbiosis enhanced hydrolase activity, catalytic activity, and DNA binding while reducing oxidoreductase activity in the molecular function (MF) domain. In particular, multiple genes associated with the GO term 'integral component of membrane' were downregulated during endosymbiosis. The endosymbiont also induced differential expression of various methyltransferases and acetyltransferases in A. castellanii. Findings herein are may significantly contribute to understanding endosymbiosis of L. pneumophila within A. castellanii.
Keywords
Acanthamoeba; Legionella; endosymbiosis; differential gene expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Visvesvara GS, Moura H, Schuster FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 2007; 50: 1-26. https://doi.org/10.1111/j.1574-695X.2007.00232.x   DOI
2 Schmitz-Esser S, Toenshoff ER, Haider S, Heinz E, Hoenninger VM, Wagner M, Horn M. Diversity of bacterial endosymbionts of environmental Acanthamoeba isolates. Appl Environ Microbiol 2008; 74: 5822-5831. https://doi.org/10.1128/AEM.01093-08   DOI
3 Greub G, Raoult D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 2004; 17: 413-433. https://doi.org/10.1128/cmr.17.2.413-433.2004   DOI
4 Richards AM, Von Dwingelo JE, Price CT, Abu Kwaik Y. Cellular microbiology and molecular ecology of Legionella-amoeba interaction. Virulence 2013; 4: 307-314. https://doi.org/10.4161/viru.24290   DOI
5 Barker J, Brown MR. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 1994; 140: 1253-1259. https://doi.org/10.1099/00221287-140-6-1253   DOI
6 Steiner B, Weber S, Hilbi H. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol 2018; 308: 49-57. https://doi.org/10.1016/j.ijmm.2017.08.004   DOI
7 Yen CY, Huang HW, Shu CW, Hou MF, Yuan SS, Wang HR, Chang YT, Farooqi AA, Tang JY, Chang HW. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers. Cancer Lett 2016; 373: 185-192. https://doi.org/10.1016/j.canlet.2016.01.036   DOI
8 Guimaraes AJ, Gomes KX, Cortines JR, Peralta JM, Peralta RH. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol Res 2016; 193: 30-38. https://doi.org/10.1016/j.micres.2016.08.001   DOI
9 Isberg RR, O'Connor TJ, Heidtman M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 2009; 7: 13-24. https://doi.org/10.1038/nrmicro1967   DOI
10 Vogel JP, Andrews HL, Wong SK, Isberg RR. Conjugative transfer by the virulence system of Legionella pneumophila. Science 1998; 279: 873-876. https://doi.org/10.1126/science.279.5352.873   DOI
11 Cazalet C, Rusniok C, Bruggemann H, Zidane N, Magnier A, Ma L, Tichit M, Jarraud S, Bouchier C, Vandenesch F, Kunst F, Etienne J, Glaser P, Buchrieser C. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 2004; 36: 1165-1173. https://doi.org/10.1038/ng1447   DOI
12 Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26: 841-842. https://doi.org/10.1093/bioinformatics/btq033   DOI
13 Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, Newton HJ, Sansom FM, Jarraud S, Zidane N, Ma L, Bouchier C, Etienne J, Hartland EL, Buchrieser C. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet 2010; 6: e1000851. https://doi.org/10.1371/journal.pgen.1000851   DOI
14 Essig A, Heinemann M, Simnacher U, Marre R. Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Appl Environ Microbiol 1997; 63: 1396-1399. https://doi.org/10.1128/AEM.63.4.1396-1399.1997   DOI
15 Molmeret M, Bitar DM, Han L, Kwaik YA. Disruption of the phagosomal membrane and egress of Legionella pneumophila into the cytoplasm during the last stages of intracellular infection of macrophages and Acanthamoeba polyphaga. Infect Immun 2004; 72: 4040-4051. https://doi.org/10.1128/IAI.72.7.4040-4051.2004   DOI
16 Mou Q, Leung PHM. Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes. Virulence 2018; 9: 185-196. https://doi.org/10.1080/21505594.2017.1373925   DOI
17 Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105-1111. https://doi.org/10.1093/bioinformatics/btp120   DOI
18 Varet H, Brillet-Gueguen L, Coppee JY, Dillies MA. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PLoS One 2016; 11: e0157022. https://doi.org/10.1371/journal.pone.0157022   DOI
19 Qiu J, Luo ZQ. Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol 2017; 15: 591-605. https://doi.org/10.1038/nrmicro.2017.67   DOI
20 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80. https://doi.org/10.1186/gb-2004-5-10-r80   DOI