• 제목/요약/키워드: amyloid ${\beta}$

검색결과 427건 처리시간 0.032초

베타아밀로이드 영상용 프로브 ([ ${\beta}-Amyloid$ ] Imaging Probes)

  • 정재민
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권2호
    • /
    • pp.112-117
    • /
    • 2007
  • Imaging distribution of ${\beta}-amyloid$ plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the ${\beta}-amyloid$ plaques includes using radiolabeled peptides which can be only applied for peripheral ${\beta}-amyloid$ plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging ${\beta}-amyloid$ plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for ${\beta}-amyloid$ imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for ${\beta}-amyloid$ imaging agent.

Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein

  • Chun, Yoon Sun;Kwon, Oh-Hoon;Oh, Hyun Geun;Cho, Yoon Young;Yang, Hyun Ok;Chung, Sungkwon
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.276-282
    • /
    • 2019
  • ${\beta}$-amyloid precursor protein (APP) can be cleaved by ${\alpha}$-, and ${\gamma}$-secretase at plasma membrane producing soluble ectodomain fragment ($sAPP{\alpha}$). Alternatively, following endocytosis, APP is cleaved by ${\beta}$-, and ${\gamma}$-secretase at early endosomes generating ${\beta}$-amyloid ($A{\beta}$), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for $A{\beta}$ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased $A{\beta}$ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on $A{\beta}$ production. We found that justicidin A reduced endocytosis of APP, increasing $sAPP{\alpha}$ level, while decreasing $A{\beta}$ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on $A{\beta}$ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.

Vaccinium uliginosum L. Improves Amyloid β Protein-Induced Learning and Memory Impairment in Alzheimer's Disease in Mice

  • Choi, Yoon-Hee;Kwon, Hyuck-Se;Shin, Se-Gye;Chung, Cha-Kwon
    • Preventive Nutrition and Food Science
    • /
    • 제19권4호
    • /
    • pp.343-347
    • /
    • 2014
  • The present study investigated the effects of Vaccinium uliginosum L. (bilberry) on the learning and memory impairments induced by amyloid-${\beta}$ protein ($A{\beta}P$) 1-42. ICR Swiss mice were divided into 4 groups: the control ($A{\beta}40$-1A), control with 5% bilberry group ($A{\beta}40$-1B), amyloid ${\beta}$ protein 1-42 treated group ($A{\beta}1$-42A), and $A{\beta}1$-42 with 5% bilberry group ($A{\beta}1$-42B). The control was treated with amyloid ${\beta}$-protein 40-1 for placebo effect, and Alzheimer's disease (AD) group was treated with amyloid ${\beta}$-protein 1-42. Amyloid ${\beta}$-protein 1-42 was intracerebroventricular (ICV) micro injected into the hippocampus in 35% acetonitrile and 0.1% trifluoroacetic acid. Although bilberry added groups tended to decrease the finding time of hidden platform, no statistical significance was found. On the other hand, escape latencies of $A{\beta}P$ injected mice were extended compared to that of $A{\beta}40$-1. In the Probe test, bilberry added $A{\beta}1$-42B group showed a significant (P<0.05) increase of probe crossing frequency compared to $A{\beta}1$-42A. Administration of amyloid protein ($A{\beta}1$-42) decreased working memory compared to $A{\beta}40$-1 control group. In passive avoidance test, bilberry significantly (P<0.05) increased the time of staying in the lighted area compared to AD control. The results suggest that bilberry may help to improve memory and learning capability in chemically induced Alzheimer's disease in experimental animal models.

A novel BACE inhibitor isolated from Eisenia bicyclis exhibits neuroprotective activity against β-amyloid toxicity

  • Lee, Jung Kwon;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제21권12호
    • /
    • pp.38.1-38.9
    • /
    • 2018
  • Alzheimer's disease (AD) is a disturbing and advanced neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta ($A{\beta}$) and the hyperphosphorylation of tau proteins in the brain. The deposition of $A{\beta}$ aggregates triggers synaptic dysfunction, and neurodegeneration, which lead to cognitive disorders. Here, we found that FF isolated from an eatable perennial brown seaweed E.bicyclis protect against $A{\beta}$-induced neurotoxicity in neuroblastoma cells stably transfected with two amyloid precursor protein (APP) constructs: the APP695 cDNA (SH-SY5Y-APP695swe). The FF demonstrated strong inhibitory activity for ${\beta}$-secretase ($IC_{50}$ $16.1{\mu}M$) and its inhibition pattern was investigated using Lineweaver-Burk and Dixon plots, and found to be non-competitive. Then, we tested whether FF could inhibit production of $A{\beta}$ in SH-SY5Y-APP695swe. FF inhibited the production of $A{\beta}$ and soluble-APP, residue of APP from cleaved APP by ${\beta}$-secretase. Our data show that FF can inhibit the production of $A{\beta}$ and soluble-$APP{\beta}$ via inhibition of ${\beta}$-secretase activity. Taken together these results suggest that FF may be worthy of future study as an anti-AD treatment.

Mercury induced the Accumulation of Amyloid Beta (Aβ) in PC12 Cells: The Role of Production and Degradation of Aβ

  • Song, Ji-Won;Choi, Byung-Sun
    • Toxicological Research
    • /
    • 제29권4호
    • /
    • pp.235-240
    • /
    • 2013
  • Extracellular accumulation of amyloid beta protein ($A{\beta}$) plays a central role in Alzheimer's disease (AD). Some metals, such as copper, lead, and aluminum can affect the $A{\beta}$ accumulation in the brain. However, the effect of mercury on $A{\beta}$ accumulation in the brain is not clear. Thus, this study was proposed to estimate whether mercury concentration affects $A{\beta}$ accumulation in PC12 cells. We treated 10, 100, and 1000 nM $HgCl_2$ (Hg) or $CH_3HgCl_2$ (MeHg) for 48 hr in PC12 cells. After treatment, $A{\beta}_{40}$ in culture medium increased in a dose- and time-dependent manner. Hg and MeHg increased amyloid precursor protein (APP), which is related to $A{\beta}$ production. Neprilysin (NEP) levels in PC12 cells were decreased by Hg and MeHg treatment. These results suggested that Hg induced $A{\beta}$ accumulation through APP overproduction and reduction of NEP.

In vitro에서 β-site amyloid precursor protein-cleaving enzyme 활성과 amyloid β protein 생산에 대한 총명탕가미방(聰明湯加味方)의 효과 (Effect of Chongmyung-Tang Prescription Combination on the Production of Amyloid β protein and β-site amyloid precursor protein-cleaving enzyme Activity in vitro)

  • 임정화;정인철;임종순;김승형;이상룡
    • 동의신경정신과학회지
    • /
    • 제21권2호
    • /
    • pp.191-200
    • /
    • 2010
  • Objectives : This experiment was designed to investigate the effect of Chongmyung-Tang Prescription Combination(CmTP-$C_{1-10}$) extract on the production of amyloid $\beta$ protein and $\beta$-site amyloid precursor protein-cleaving enzyme(BACE) activity. Methods : The effect of CmTP-$C_{1-10}$ extract on expression of APP mRNA, BACE2 mRNA in BV2 microglia cell line treated by lipopolysacchride(LPS) and amyloid $\beta$ protein fragment(A$\beta$ fragment) were investigated. The effect of CmTP-$C_{1-10}$ extract on production of amyloid $\beta$ protein(A$\beta$) in BV2 microglia cell line treated by LPS and A$\beta$ fragment were investigated. The effect of CmTP-$C_{1-10}$ extract on BACE activity were investigated. Results : 1. CmTP-$C_9$ extract the most significantly suppressed the expression of APP mRNA, BACE2 mRNA in BV2 microglia cell line treated by LPS and A$\beta$ fragment. 2. CmTP-$C_9$ extract significantly suppressed the production of A$\beta$ in BV2 microglia cell line treated by LPS and A$\beta$ fragment. 3. CmTP-$C_9$ extract the most significantly inhibited BACE activity. Conclusions : These results suggest that CmTP-$C_9$ may be effective for the prevention and treatment of Alzheimer's Disease. Investigation into clinical use of CmTP-$C_9$ for Alzheimer's Disease is suggested for future research.

청열약 추출물들의 아세틸콜린에스테라제 저해와 베타아밀로이드 펩티드 응집 억제 효능 (Inhibitory potency of Acetylcholinesterase and Amyloid beta(1-42) peptide aggregation to the Extracts of Enthusiasm Reducing herbals)

  • 권영이
    • 생약학회지
    • /
    • 제38권4호
    • /
    • pp.308-311
    • /
    • 2007
  • Inhibition of acetylcholinesterase and amyloid beta(1-42) peptide is good drug targets for Alzheimer's disease therapeutics. Among the twenty enthusiasm reducing herbals, the 70% methanol extracts (1 mg/ml) of Moutan Radicis Cortex and Forsythiae Fructus showed 91.5% and 85.3% about acethylcholinesterase inhibition, respectively. The extracts (1 mg/ml) of Coptidis Rhizoma and Paeoniae Radix Rubra showed more than 85% inhibition rate against amyloid beta (1-42) peptide aggregation. The neuroprotective effect of the extracts (1 mg/ml) of Moutan Radicis Cortex, Forsythiae Fructus and Paeoniae Radix Rubra showed 90.0%, 87.4% and 85.1% to compare with amyloid beta (1-42) peptide treated cells (IMR-32), respectively. Three herbs, Moutan Radicis Cortex, Forsythiae Fructus and Paeoniae Radix Rubra are promising candidates from natural products for development of Alzheimer's disease therapeutics.

신경교 세포에서 resveratrol이 amyloid-β에 의해 유도되는 Cdk inhibitor p21 및 Bax 발현의 감소 효과 (Effect of Resveratrol on the Induction of Cdk Inhibitor p21 and Pro-apoptotic Bax Expression by amyloid-β in Astroglioma C6 Cells)

  • 김영애;임선영;고우신;최병태;이용태;이숙희;박건영;이원호;최영현
    • 생명과학회지
    • /
    • 제15권2호
    • /
    • pp.169-175
    • /
    • 2005
  • Resveratrol (3,4',5-trihydroxy-trans-stilbene)은 포도와 같은 식물에서 각종 감염균으로부터 자신의 몸을 보호하기 위하여 생성되는 물질인 phytoalexin의 일종으로 강력한 항산화작용, 암예방 효과 및 항암 작용을 포함한 각종 약리작용을 가진 것으로 보고 되어져 오고 있다. Alzheimer 환자의 뇌에 축적되어 뇌 신경세포를 죽이는 amyloid plaque의 주 성분은 $amyloid-\beta$의 축적에 의한 것인데, $amyloid-\beta$는 정상적인 단백질 신진대사 과정의 결과로 체내 모든 세포들로부터 생성되는 물질이다. 본 연구에서는 resveratrol의 세포독성 보호효과에 관한 효능을 검증하기 위하여 C6 신경교세포에서 $amyloid-\beta-peptide$ (fragment 31-35)에 의한 세포독성 및 세포성장 조절관련 주요 유전자들의 발현에 미치는 resveratrol의 영향을 조사하였다. $Amyloid-\beta$가 처리된 C6세포는 처리 농도의존적으로 증식이 억제되었으며, 형태적 변형도 유발 되었으나 resveratrol의 전처리에 의하여 효과적으로 차단되었다. RT-PCR 및 Western blot analysis에 의한 결과에서 $amyloid-\beta$ 처리에 의한 세포증식 억제는 종양억제유전자 p53 및 Cdk 억제제인 p21 (WAF1/CIP1) 발현이 증가되었다. 또한 apoptosis 유발에 매우 중요한 역할을 수행하는 Bax의 발현도 $amyloid-\beta$가 처리된 C6 세포에서 발현이 증가되었으나 apoptosis 유발억제에 관여하는 Bcl-2및 $Bcl-X_{L}$ 발현에는 큰 영향을 미치지 못하였다. 그러나 resveratrol이 전처리된 세포에서는 처리 농도 의존적으로 $amyloid-\beta$에 의해 유도되는 p53, p21 및 Bax의 발현이 정상수준으로 회복되었다.

Effect of Mycelial Extract of Clavicorona pyxidata on the Production of Amyloid $\beta$-Peptide and the Inhibition of Endogenous $\beta$-Secretase Activity in vitro

  • Lee, Tae-Hee;Park, Young-Il;Han, Yeong-Hwan
    • Journal of Microbiology
    • /
    • 제44권6호
    • /
    • pp.665-670
    • /
    • 2006
  • Amyloid $\beta$-peptide (A$\beta$), which is a product of the proteolytic effect of $\beta$-secretase (BACE) on an amyloid precursor protein, is closely associated with Alzheimer's disease (AD) pathogenesis. There is sufficient evidence to suggest that a BACE inhibitor may reduce A$\beta$ levels, thus decreasing the risk of AD. In a previous study, an extract of Clavicorona pyxidata DGUM 29005 mycelia was found to inhibit the production of a soluble $\beta$-amyloid precursor protein (s$\beta$APP), A$\beta$, and BACE in neuronal cell lines. We sought to determine whether this mycelial extract exerts the same effect in human rhabdomyosarcoma A-204 and rat pheochromocytoma PC-12 cells. We found that the production of A$\beta$ decreased in a dose-dependent manner in the presence of the mycelial extract and that the concentration of A$\beta$ never exceeded $50{\mu}g/ml$. The presence of sAPP was detected in every culture medium to which the mycelial extract had been added and its concentration remained the same, regardless of the concentration of the extract used. Endogenous $\beta$-secretase activity in A-204 and PC-12 cellular homogenates also decreased in the presence of this extract. These cells, in culture, were not susceptible to the cytotoxic activity of the mycelial extract.