• Title/Summary/Keyword: amount of learning

Search Result 1,008, Processing Time 0.024 seconds

The Actual Condition and Development Direction of A Community Child Center (전라북도 지역아동센터 현황과 발전방안)

  • Yee, Young Hwan
    • Korean Journal of Childcare and Education
    • /
    • v.7 no.3
    • /
    • pp.67-100
    • /
    • 2011
  • This study assesses the current status of community child centers in Jeollabuk-do by analyzing data from evaluations of 225 centers in 2009. The results are as follows. First, as of 2004, there was a total of 37 Jeollabuk-do community child centers; the number has been increasing at a rate of 20~40% yearly. The number of community child centers has been increasing since government funding was implemented, especially as an authorization is not required to open a center. In order to prevent an excessive amount of childcare centers, and to ensure that new centers meet a standard of quality, it is necessary to examine replacing the current reporting system with an authorization system. Second, out the 6,144 children in the 255 centers, 1,711 children (27.8%) were not from low-income families. This may be positive in that children from various income level families are learning together. However, in order for the community child centers to operate as they were intended, it is necessary to reinforce the itemized regulations. Third, the community child centers scored relatively poorly in utilizing community and human resources. This is because although most Jeollabuk-do childcare centers are using volunteer personnel, they are not fully utilizing community resources. The governments of the cities and counties should support the community child centers by promoting their services and roles, and thereby enable the centers to develop a network of professionals in the community.

Survival network based Android Authorship Attribution considering overlapping tolerance (중복 허용 범위를 고려한 서바이벌 네트워크 기반 안드로이드 저자 식별)

  • Hwang, Cheol-hun;Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.13-21
    • /
    • 2020
  • The Android author identification study can be interpreted as a method for revealing the source in a narrow range, but if viewed in a wide range, it can be interpreted as a study to gain insight to identify similar works through known works. The problem found in the Android author identification study is that it is an important code on the Android system, but it is difficult to find the important feature of the author due to the meaningless codes. Due to this, legitimate codes or behaviors were also incorrectly defined as malicious codes. To solve this, we introduced the concept of survival network to solve the problem by removing the features found in various Android apps and surviving unique features defined by authors. We conducted an experiment comparing the proposed framework with a previous study. From the results of experiments on 440 authors' identified apps, we obtained a classification accuracy of up to 92.10%, and showed a difference of up to 3.47% from the previous study. It used a small amount of learning data, but because it used unique features without duplicate features for each author, it was considered that there was a difference from previous studies. In addition, even in comparative experiments with previous studies according to the feature definition method, the same accuracy can be shown with a small number of features, and this can be seen that continuously overlapping meaningless features can be managed through the concept of a survival network.

Automatic scoring of mathematics descriptive assessment using random forest algorithm (랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점)

  • Inyong Choi;Hwa Kyung Kim;In Woo Chung;Min Ho Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.165-186
    • /
    • 2024
  • Despite the growing attention on artificial intelligence-based automated scoring technology as a support method for the introduction of descriptive items in school environments and large-scale assessments, there is a noticeable lack of foundational research in mathematics compared to other subjects. This study developed an automated scoring model for two descriptive items in first-year middle school mathematics using the Random Forest algorithm, evaluated its performance, and explored ways to enhance this performance. The accuracy of the final models for the two items was found to be between 0.95 to 1.00 and 0.73 to 0.89, respectively, which is relatively high compared to automated scoring models in other subjects. We discovered that the strategic selection of the number of evaluation categories, taking into account the amount of data, is crucial for the effective development and performance of automated scoring models. Additionally, text preprocessing by mathematics education experts proved effective in improving both the performance and interpretability of the automated scoring model. Selecting a vectorization method that matches the characteristics of the items and data was identified as one way to enhance model performance. Furthermore, we confirmed that oversampling is a useful method to supplement performance in situations where practical limitations hinder balanced data collection. To enhance educational utility, further research is needed on how to utilize feature importance derived from the Random Forest-based automated scoring model to generate useful information for teaching and learning, such as feedback. This study is significant as foundational research in the field of mathematics descriptive automatic scoring, and there is a need for various subsequent studies through close collaboration between AI experts and math education experts.

Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data (IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델)

  • Kim, Sam-Keun;Oh, Tack-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.310-318
    • /
    • 2018
  • Recently, the importance of big data analysis is increasing as a large amount of data is generated by various devices connected to the Internet with the advent of Internet of Things (IoT). Especially, it is necessary to analyze various large-scale IoT streaming sensor data generated in real time and provide various services through new meaningful prediction. This paper proposes a real-time indoor PM10 concentration prediction LSTM model based on streaming data generated from IoT sensor using AWS. We also construct a real-time indoor PM10 concentration prediction service based on the proposed model. Data used in the paper is streaming data collected from the PM10 IoT sensor for 24 hours. This time series data is converted into sequence data consisting of 30 consecutive values from time series data for use as input data of LSTM. The LSTM model is learned through a sliding window process of moving to the immediately adjacent dataset. In order to improve the performance of the model, incremental learning method is applied to the streaming data collected every 24 hours. The linear regression and recurrent neural networks (RNN) models are compared to evaluate the performance of LSTM model. Experimental results show that the proposed LSTM prediction model has 700% improvement over linear regression and 140% improvement over RNN model for its performance level.

Big Data Utilization and Policy Suggestions in Public Records Management (공공기록관리분야의 빅데이터 활용 방법과 시사점 제안)

  • Hong, Deokyong
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.21 no.4
    • /
    • pp.1-18
    • /
    • 2021
  • Today, record management has become more important in management as records generated from administrative work and data production have increased significantly, and the development of information and communication technology, the working environment, and the size and various functions of the government have expanded. It is explained as an example in connection with the concept of public records with the characteristics of big data and big data characteristics. Social, Technological, Economical, Environmental and Political (STEEP) analysis was conducted to examine such areas according to the big data generation environment. The appropriateness and necessity of applying big data technology in the field of public record management were identified, and the top priority applicable framework for public record management work was schematized, and business implications were presented. First, a new organization, additional research, and attempts are needed to apply big data analysis technology to public record management procedures and standards and to record management experts. Second, it is necessary to train record management specialists with "big data analysis qualifications" related to integrated thinking so that unstructured and hidden patterns can be found in a large amount of data. Third, after self-learning by combining big data technology and artificial intelligence in the field of public records, the context should be analyzed, and the social phenomena and environment of public institutions should be analyzed and predicted.

DNN Model for Calculation of UV Index at The Location of User Using Solar Object Information and Sunlight Characteristics (태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델)

  • Ga, Deog-hyun;Oh, Seung-Taek;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.29-35
    • /
    • 2022
  • UV rays have beneficial or harmful effects on the human body depending on the degree of exposure. An accurate UV information is required for proper exposure to UV rays per individual. The UV rays' information is provided by the Korea Meteorological Administration as one component of daily weather information in Korea. However, it does not provide an accurate UVI at the user's location based on the region's Ultraviolet index. Some operate measuring instrument to obtain an accurate UVI, but it would be costly and inconvenient. Studies which assumed the UVI through environmental factors such as solar radiation and amount of cloud have been introduced, but those studies also could not provide service to individual. Therefore, this paper proposes a deep learning model to calculate UVI using solar object information and sunlight characteristics to provide an accurate UVI at individual location. After selecting the factors, which were considered as highly correlated with UVI such as location and size and illuminance of sun and which were obtained through the analysis of sky images and solar characteristics data, a data set for DNN model was constructed. A DNN model that calculates the UVI was finally realized by entering the solar object information and sunlight characteristics extracted through Mask R-CNN. In consideration of the domestic UVI recommendation standards, it was possible to accurately calculate UVI within the range of MAE 0.26 compared to the standard equipment in the performance evaluation for days with UVI above and below 8.

Multimodal Emotional State Estimation Model for Implementation of Intelligent Exhibition Services (지능형 전시 서비스 구현을 위한 멀티모달 감정 상태 추정 모형)

  • Lee, Kichun;Choi, So Yun;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Both researchers and practitioners are showing an increased interested in interactive exhibition services. Interactive exhibition services are designed to directly respond to visitor responses in real time, so as to fully engage visitors' interest and enhance their satisfaction. In order to install an effective interactive exhibition service, it is essential to adopt intelligent technologies that enable accurate estimation of a visitor's emotional state from responses to exhibited stimulus. Studies undertaken so far have attempted to estimate the human emotional state, most of them doing so by gauging either facial expressions or audio responses. However, the most recent research suggests that, a multimodal approach that uses people's multiple responses simultaneously may lead to better estimation. Given this context, we propose a new multimodal emotional state estimation model that uses various responses including facial expressions, gestures, and movements measured by the Microsoft Kinect Sensor. In order to effectively handle a large amount of sensory data, we propose to use stratified sampling-based MRA (multiple regression analysis) as our estimation method. To validate the usefulness of the proposed model, we collected 602,599 responses and emotional state data with 274 variables from 15 people. When we applied our model to the data set, we found that our model estimated the levels of valence and arousal in the 10~15% error range. Since our proposed model is simple and stable, we expect that it will be applied not only in intelligent exhibition services, but also in other areas such as e-learning and personalized advertising.

Counter Measures by using Execution Plan Analysis against SQL Injection Attacks (실행계획 분석을 이용한 SQL Injection 공격 대응방안)

  • Ha, Man-Seok;Namgung, Jung-Il;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.76-86
    • /
    • 2016
  • SQL Injection attacks are the most widely used and also they are considered one of the oldest traditional hacking techniques. SQL Injection attacks are getting quite complicated and they perform a high portion among web hacking. The big data environments in the future will be widely used resulting in many devices and sensors will be connected to the internet and the amount of data that flows among devices will be highly increased. The scale of damage caused by SQL Injection attacks would be even greater in the future. Besides, creating security solutions against SQL Injection attacks are high costs and time-consuming. In order to prevent SQL Injection attacks, we have to operate quickly and accurately according to this data analysis techniques. We utilized data analytics and machine learning techniques to defend against SQL Injection attacks and analyzed the execution plan of the SQL command input if there are abnormal patterns through checking the web log files. Herein, we propose a way to distinguish between normal and abnormal SQL commands. We have analyzed the value entered by the user in real time using the automated SQL Injection attacks tools. We have proved that it is possible to ensure an effective defense through analyzing the execution plan of the SQL command.

A Study on Virtual Environment Platform for Autonomous Tower Crane (타워크레인 자율화를 위한 가상환경 플랫폼 개발에 관한 연구)

  • Kim, Myeongjun;Yoon, Inseok;Kim, Namkyoun;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.3-14
    • /
    • 2022
  • Autonomous equipment requires a large amount of data from various environments. However, it takes a lot of time and cost for an experiment in a real construction sites, which are difficulties in data collection and processing. Therefore, this study aims to develop a virtual environment for autonomous tower cranes technology development and validation. The authors defined automation functions and operation conditions of tower cranes with three performance criteria: operational design domain, object and event detection and response, and minimum functional conditions. Afterward, this study developed a virtual environment for learning and validation for autonomous functions such as recognition, decision making, and control using the Unity game engine. Validation was conducted by construction industry experts with a fidelity which is the representative matrix for virtual environment assessment. Through the virtual environment platform developed in this study, it will be possible to reduce the cost and time for data collection and technology development. Also, it is also expected to contribute to autonomous driving for not only tower cranes but also other construction equipment.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.