DOI QR코드

DOI QR Code

타워크레인 자율화를 위한 가상환경 플랫폼 개발에 관한 연구

A Study on Virtual Environment Platform for Autonomous Tower Crane

  • Kim, Myeongjun (Department of Architecture, Seoul National University) ;
  • Yoon, Inseok (Department of Architecture, Seoul National University) ;
  • Kim, Namkyoun (Department of Architecture, Seoul National University) ;
  • Park, Moonseo (Department of Architecture, Seoul National University) ;
  • Ahn, Changbum (Department of Architecture, Seoul National University) ;
  • Jung, Minhyuk (Department of Architecture, Seoul National University)
  • 투고 : 2021.12.30
  • 심사 : 2022.06.02
  • 발행 : 2022.07.31

초록

건설현장 생산성 및 안전성 향상을 위해 건설장비 자율화를 위해 산학에서 많은 노력을 기울이고 있다. 장비 자율화를 위해서는 다양한 환경과 많은 양의 데이터 수집이 필요하다. 하지만 실제 환경에서 데이터 수집을 위한 테스트베드 확보에 많은 시간과 비용이 소모되며 불확실성 역시 크기 때문에 효과적인 데이터 수집과 처리에 어려움이 존재한다. 이에 본 연구에서는 타워크레인을 대상으로 자율화기술 개발을 위한 데이터 수집 및 테스트가 가능한 가상환경을 개발하는 것을 목표로 한다. 본 연구에서 달성한 연구성과는 다음과 같다. 1. 타워크레인 자율운행에 필요한 기술과 기술이 적용될 수 있는 환경을 운영설계 도메인, 물체 및 이벤트 감지 및 반응, 최소기능조건이라는 세 가지 성능기준을 활용하여 정의함. 2. 정의된 환경 내에서 자율화 장비의 인지, 판단, 제어를 위한 각 기술을 학습하고 테스트하기 위한 가상 환경을 Unity를 활용하여 구축함. 3. 가상환경의 목적 달성 여부를 위한 평가지표로 Visual, Motion, Functional Fidelity를 사용해 가상환경이 현실 공사현장을 충실하게 표현하고 있음을 검증함. 본 연구에서 구축한 가상환경 플랫폼을 통해 등 타워크레인 자율화에 있어 요구되는 가상 데이터를 수집하고, 각 기능들을 테스트하는 데 소모되는 비용 및 시간을 절감할 수 있을 것이며, 또한 타워크레인 뿐 아니라 타 건설장비의 자율화기술 개발에 있어서도 기여할 수 있을 것으로 기대된다.

Autonomous equipment requires a large amount of data from various environments. However, it takes a lot of time and cost for an experiment in a real construction sites, which are difficulties in data collection and processing. Therefore, this study aims to develop a virtual environment for autonomous tower cranes technology development and validation. The authors defined automation functions and operation conditions of tower cranes with three performance criteria: operational design domain, object and event detection and response, and minimum functional conditions. Afterward, this study developed a virtual environment for learning and validation for autonomous functions such as recognition, decision making, and control using the Unity game engine. Validation was conducted by construction industry experts with a fidelity which is the representative matrix for virtual environment assessment. Through the virtual environment platform developed in this study, it will be possible to reduce the cost and time for data collection and technology development. Also, it is also expected to contribute to autonomous driving for not only tower cranes but also other construction equipment.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호: 21CTAP-C163785-01).

참고문헌

  1. Moore, A., and Lee, M.S. (1988). "Cached sufficient statistics for efficient machine learning with large datasets." Journal of Artificial Intelligence Research, 8, pp. 67-91. https://doi.org/10.1613/jair.453
  2. Bank of Korea. (2019). National Accounts.
  3. Borden, R.H., Holtz, R.O., and Juran, I. (1992). "Grouting, soil improvement and geosynthetics." Proceedings of the 1992 ASCE Specialty Conference, New Orleans, LA, USA.
  4. Construction Economy Research Institute of Korea (CERIK) (2008). Global Engineering-Construction Strategies for Korean Construction Companies, CERIK Research Report, 2008-08.
  5. Dutta, S., Cai, Y., Huang, L., and Zheng, J. (2020). "Automatic re-planning of lifting paths for robotized tower cranes in dynamic BIM environments." Automation in Construction, 110, 102998. https://doi.org/10.1016/j.autcon.2019.102998
  6. Garrett, D.L. (2003). "Coupled analtiss of flating production systems." Proc., Int. Symp. on Deep Mooring Systems, ASCE, Reston, vacancy decontro, 23(4). pp. 152-167.
  7. Gu, L., Kou, X., and Jia, J. (2012). "Distance measurement for tower crane obstacle based on multi-ultrasonic sensors." In 2012 IEEE International Conference on Automation Science and Engineering (CASE), IEEE, pp. 1028-1032.
  8. Hong, G.D. (2005). "Market of CM for fee." CM Forum, (Dec. 15, 2005).
  9. Hong, Y. (2015). "A Study on the Function and Safety Evaluation of Autonomous Cars." Monthly KOTI Magazine on Transport, pp. 13-18.
  10. Hu, Y., Chan, A.P., Le, Y., and Jin, R.Z. (2015). "From construction megaproject management to complex project management: Bibliographic analysis." Journal of management in engineering, 31(4), 04014052. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000254
  11. Hung, W.H., and Kang, S.C. (2009). "Physics-based crane model for the simulation of cooperative erections." In 9th International Conference on Construction Applications of Virtual Reality, pp. 5-6.
  12. Liggett, J.A., and Caughey, D.A. (1998). "Fluid statics." Fluid mechanics (CD-ROM), ASCE Press, Reston, Va.
  13. Liu, D., Macchiarella, N.D., and Vincenzi, D.A. (2008). Simulation fidelity. Human factors in simulation and training, pp. 61-73.
  14. Lynch, K., and Hack, G. (1994). Site Planning, 3rd ed, MIT Press, Cambridge, pp. 132-153.
  15. Ministry of Land, Infrastructure and Transport (2018). "Innovation Pl an for the Construction Industry."
  16. Ministry of Land , Infrastructure and Transport (2018). "Smart Construction Technology Roadmap for Construction Productivity Innovation and Safety Enhancement."
  17. Muller, M., Chentanez, N., Jeschke, S., and Macklin, M. (2018). Cable joints. In Computer Graphics Forum, 37(8) pp. 1-10. https://doi.org/10.1111/cgf.13514
  18. Myers, P.L., Starr, A.W., and Mullins, K. (2018). "Flight Simulator Fidelity, Training Transfer, and the Role of Instructors in Optimizing Learning." International Journal of Aviation, Aeronautics, and Aerospace, 5(1), pp. 6.
  19. National Highway Traffic Safety Administration. (2017). Automated driving systems 2.0: A vision for safety. Washington, DC: US Department of Transportation, DOT HS, p. 812, 442.
  20. Park, G. (2016). "A Study on the Improvement of Tower Crane Operation in Construction Sites". Construction Policy Review, 2016-06.
  21. Park, M.S., Ham, Y.J., Lee, H.S., and Kim, W.Y. (2010). "Development of Design Process Management Model using Dependency Structure Matrix for Constructability." Korean Journal of Construction Engineering and Management, KICEM, 11(5), pp. 65-74. https://doi.org/10.6106/KJCEM.2010.11.5.65
  22. Patel, K.K. (2020). A Simulation Environment with Reduced Reality Gap for Testing Autonomous Vehicles, Doctoral dissertation, University of Windsor, Canada.
  23. Shao, X., Zhang, J., Zhang, X., Zhao, Z., and Chen, Z. (2020). "A novel anti-swing and position control method for overhead crane." Science progress, 103(1), 0036850419883539.
  24. Shi, H.T., Huang, J.Q., Bai, X., Huang, X., and Sun, J. (2021). "Nonlinear Anti-swing Control of Underactuated Tower Crane Based on Improved Energy Function." International Journal of Control, Automation and Systems, 19(12), pp. 3967-3982. https://doi.org/10.1007/s12555-020-0292-1
  25. Sleiman, J.P., Zankoul, E., Khoury, H., and Hamzeh, F. (2016). "Sensor-based planning tool for tower crane anti-collision monitoring on construction sites." In Construction Research Congress 2016, pp. 2624-2632.
  26. Sotiropulos, S.N. (1991). "Statis response of bridge superstructures made of fiber reinforced plastic." MS thesis, West Virginia Univ., Morgantown, W. Va.
  27. Stahl, D.C., Wolfe, R.W., and Begel, M. (2004). "Improved analysis of timber rivet connections." J. Struct. Eng., 130(8), pp. 1272-1279. https://doi.org/10.1061/(asce)0733-9445(2004)130:8(1272)
  28. J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil , T . To , E . Cameracci , S . Boochoon , and S .Birchfield (2018 ). "Training deep networks with synthetic data : Bridging the reality gap by domain randomization ." In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, IEEE, pp. 969-977.
  29. Unity. Wind component [Website]. (2021, Sep 26). http://rayfirestudios.com/online-help-unity/components/unity-wind-component/
  30. Wang, P., Wu, P., Wang, J., Chi, H.L., and Wang, X. (2018). "A critical review of the use of virtual reality in construction engineering education and training." International Journal of Environmental Research and Public Health, 15(6), p. 1204. https://doi.org/10.3390/ijerph15061204
  31. Yoon, S., Jung, J., Hong, J., Lim, k., Kim, J., and Kim, H. (2020). "Development of Autonomous Vehicle Learning Data Generation System," The Journal of The Korea Institute of Intelligent Transport Systems, 19(5), pp. 162-177. https://doi.org/10.12815/kits.2020.19.5.162
  32. Zhang, Z., and Pan, W. (2020). "Lift planning and optimization in construction: A thirty-year review." Automation in Construction, 118, 103271. https://doi.org/10.1016/j.autcon.2020.103271