• Title/Summary/Keyword: amorphous silicon

Search Result 791, Processing Time 0.036 seconds

Signal Generation Due to Alpha Particle in Hydrogenated Amorphous Silicon Radiation Detectors

  • Kim, Ho-Kyung;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.397-404
    • /
    • 1996
  • The hydrogenated amorphous silicon (a-Si : H) holds good promise for radiation detection from its inherent merits over crystalline counterpart. For the application to alpha spectroscopy, the induced charge collection in a-Si : H pin detector diodes ons simulated based on a relevant non-uniform charge generation model. The simulation was peformed for the initial energy and the range of incident alpha particles, detector thickness and the operational parameters such as the applied reverse bias voltage and shaping time. From the simulation, the total charge collection was strongly affected by hole collection as expected. To get a reasonable signal generation, therefore, the hole collection should be seriously considered for detector operational parameters such as shaping time and reverse voltage etc. For the spectroscopy of alpha particle from common alpha sources, the amorphous silicon should have about 70${\mu}{\textrm}{m}$ thickness.

  • PDF

Effects of Photon Energy Spectrum on the Photocurrent of Hydrogenated Amorphous Silicon Thin Film Transistor by Using Frequency Filters

  • Cho, Eou Sik;Kwon, Sang Jik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.16-19
    • /
    • 2013
  • Frequency filters with various filtering wavelengths were used in the photoelectric characterization of hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and the experimental results were described and analyzed in terms of the photon energy spectral characteristics calculated from the integration of the photon energy and the spectral intensity of transmitted backlight through the filters at each wavelength. From the comparison of the photocurrents and the calculated photon energy spectrums for the filtered ranges of wavelength, it was possible to conclude that the photocurrents are closely related to the photon energy spectrums of the backlight.

Characterization of Solid Phase Crystallization in Sputtered and LFCVD Amorphous Silicon Thin Film (스퍼터링 및 저압화학기상증착 비정질 실리곤 박막의 고상 결정화 특성)

  • 김형택
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.89-93
    • /
    • 1995
  • Effects of hydrogenation in amorphous silicon rile growths on Solid Phase Crystallization (SPC) was investigated using x-ray diffractometry, energy dispersive Spectroscopy, and Raman spectrum. Interdiffusion of barium(Ba) and aluminum(Al) compounds of corning substrate was observed in both of rf sputtering and LFCVD films under the low temperature(580$^{\circ}C$) annealing. Low degree of crystallinity resulted from the interdiffusion was obtained. Highly applicable degree of crystallinity was obtained through the mechanical damage induced surface activation on amorphous silicon films. X-ray diffraction intensity of (111) orientation was used to characterize the degree of crystallinity of SPC. Nucleation and growth rate in SPC could be controllable through the employed surface treatment. IIydrogenated LPCVD films showed the superior crystallinity to non-hydrogenated sputtering films. Insignificant effects of activation treatment in sputtered film was of activation treatment in sputtered film was observed on SPC.

  • PDF

The Substrate Effects on Kinetics and Mechanism of Solid-Phase Crystallization of Amorphous Silicon Thin Films

  • Song, Yoon-Ho;Kang, Seung-Youl;Cho, Kyoung-Ik;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.19 no.1
    • /
    • pp.26-35
    • /
    • 1997
  • The substrate effects on solid-phase crystallization of amorphous silicon (a-Si) films deposited by low-pressure chemical vapor deposition (LPCVD) using $Si_2H_6$ gas have been extensively investigated. The a-Si films were prepared on various substrates, such as thermally oxidized Si wafer ($SiO_2$/Si), quartz and LPCVD-oxide, and annealed at 600$^{\circ}C$ in an $N_2$ ambient for crystallization. The crystallization behavior was found to be strongly dependent on the substrate even though all the silicon films were deposited in amorphous phase. It was first observed that crystallization in a-Si films deposited on the $SiO_2$/Si starts from the interface between the a-Si and the substrate, so called interface-interface-induced crystallization, while random nucleation process dominates on the other substrates. The different kinetics and mechanism of solid-phase crystallization is attributed to the structural disorderness of a-Si films, which is strongly affected by the surface roughness of the substrates.

  • PDF

Deposition Behaviors of Ti-Si-N Thin Films by RF Plasma-Enhanced Chemical Vapor Deposition. (RF-PECVD법에 의한 Ti-Si-N 박막의 증착거동)

  • 이응안;이윤복;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.211-217
    • /
    • 2002
  • Ti-Si-N films were deposited onto WC-Co substrate by a RF-PECVD technique. The deposition behaviors of Ti-Si-N films were investigated by varying the deposition temperature, RF power, and reaction gas ratio (Mx). Ti-Si-N films deposited at 500, 180W, and Mx 60% had a maximum hardness value of 38GPa. The microstructure of films with a maximum hardness was revealed to be a nanocomposite of TiN crystallites penetrated by amorphous silicon nitride phase by HRTEM analyses. The microstructure of maximum hardness with Si content (10 at.%) was revealed to be a nanocomposite of TiN crystallites penetrated by amorphous silicon nitride phase, but to have partly aligned structure of TiN and some inhomogeniety in distribution. and At above 10 at.% Si content, TiN crystallite became finer and more isotropic also thickness of amorphous silicon nitride phase increased at microstructure.

Immunity Improvement of Mo Silicidized a-Si FEA to Vacuum Environments

  • Shim, Byung-Chang;Lee, Jong-Duk;Park, Byung-Gook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.141-142
    • /
    • 2000
  • In order to improve electron field emission and its stability, tip surface of amorphous silicon field emitters have been coated with molybdenum layer with a thickness of 25 nm through the gate opening and annealed rapidly in inert ambient. Compared with amorphous silicon field emitters, Mo silicidized amorphous silicon field emitters exhibited lower turn on voltage about 9 V, 3.8 times higher maximum current, 3.1 times lower fluctuation range and less change of the emission current depending on the vacuum level.

  • PDF

Transient Photocurrent in Amorphous Silicon Radiation Detectors

  • Lee, Hyoung-Koo;Suh, Tae-Suk;Choe, Bo-Young;Shinn, Kyung-Sub;Cho, Gyu-Seong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.468-475
    • /
    • 1997
  • The transient photocurrent in amorphous silicon radiation detectors (n-i-n and forward biased p-i-n) were analyzed. The transient photocurrents in these devices could be modeled using multiple trap levels in the forbidden gap. Using this model the rise and decay shapes of the photocurrents could be fitted. The decaying photocurrent shapes of the p-i-n and n-i-n devices after a short duration of light pulse showed a similar behavior at low dark current density levels, but at higher dark current density levels the photocurrent of the p-i-n diode decayed faster than that of the n-i-n, which could be explained by the decreased electron lifetimes in the forward biased p-i-n diode at high dark current densities. The transient photoconductive gain behaviors in the amorphous silicon radiation detectors are discussed in terms of device configuration, dark current density and time scale.

  • PDF

The Characteristics of a Hydrogenated Amorphous Silicon Semitransparent Solar Cell When Applying n/i Buffer Layers

  • Lee, Da Jung;Yun, Sun Jin;Lee, Seong Hyun;Lim, Jung Wook
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.730-733
    • /
    • 2013
  • In this work, buffer layers with various conditions are inserted at an n/i interface in hydrogenated amorphous silicon semitransparent solar cells. It is observed that the performance of a solar cell strongly depends on the arrangement and thickness of the buffer layer. When arranging buffer layers with various bandgaps in ascending order from the intrinsic layer to the n layer, a relatively high open circuit voltage and short circuit current are observed. In addition, the fill factors are improved, owing to an enhanced shunt resistance under every instance of the introduced n/i buffer layers. Among the various conditions during the arrangement of the buffer layers, a reverse V shape of the energy bandgap is found to be the most effective for high efficiency, which also exhibits intermediate transmittance among all samples. This is an inspiring result, enabling an independent control of the conversion efficiency and transmittance.

Fabrication of a Hydrogenated a-Si Photodiode

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.23-26
    • /
    • 2003
  • A photodiode capable of obtaining a sufficient photo/dark current ratio at both a forward bias state and a reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as a schottky barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. Growth of high quality alumina($Al_{2}O_{3}$) film using anodizing technology is proposed and analyzed by experiment. We have obtained the film with a superior characteristics

Photoconductive properties of B-doped hydrogenated amorphous silicon thin films (붕소 도핑된 수소화 비정질 실리콘박막의 광도전특성)

  • Park, Wug-Dong;Park, Ki-Chul;Park, Chang-Bae;Kim, Ki-Wan
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.497-500
    • /
    • 1987
  • Photoconductive properties of B-doped hydrogenated amorphous silicon thin films prepared by the RF glow discharge decomposition of $SiH_4-B_2H_6$ gas mixtures have been investigated. Experimental results showed that the B-doped hydrogenated amorphous silicon thin films have high photosensitivity and good optical absorption. Therefore these thin films can be used for the photoconductive layer of the vidicon target.

  • PDF