• Title/Summary/Keyword: alumina particle

Search Result 297, Processing Time 0.024 seconds

Preparation of High-Temperature catalytic Support from Gibbsite II. Properties of Amophous Alumina as Precursor of Catalyst Support (깁사이트를 원료로 한 고온촉매용 담체의 제조 II, 비정질 알루미나의 담체 전구체로서의 특성)

  • 김성연;김연식
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.92-100
    • /
    • 1996
  • Amorphous alumina(AA) the precursor of ${\gamma}$-alumina for catalyst support was made in the newly designed ball filled heating column. Some properties of AA as precursor were investigated. In observation of microstruc-ture and pore structure of AA and its derivatives scanning electronic microscope(SEM) and transmission electronic microscope(TEM) were used. It was found that the width of one particle in AA was 45~60$\AA$ and the average distance among the particles ranged 9~12 $\AA$ which suggested a micropore structure. When AA was reacted with water the shape of the surface was found to be altered and acicular bioehmite was formed inside AA which contributed inproved formability. Pore distribution was evaluated for the three samples of AA ground and granulated lump and La2O3 coated alumina. Acid sites were quantitatively determined by ammonia TPD method and the effect of impurity of Na on acid sites was discussed. Water adsorption capacity was evaluated in terms of a desiccant.

  • PDF

Preparation of Alumina Coated Zirconia Powder by Hydrolysis of Aluminum Butoxide (가수분해법에 의한 알루미나 코팅 지르코니아 분말의 제조)

  • Lee, Jong-Kook;Kim, Yoon-Soo;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1401-1407
    • /
    • 1995
  • Zirconia powder coated with alumina was prepared by hydrolysis of alumina butoxide. The coated powder was obtained by a hydrolysis reaction between the adsorbed water on the surface of zirconia particles and aluminum sec-butoxide. Amorphous aluminum hydroxide was uniformly coated on the surface of zirconia particles with the thickness of about 30 nm. The shape and distribution of aluminum hydroxide was varied with an existence of surfactant. The coated layer of aluminum hydroxide consists of the fine particle size, and the zirconia powder coated by alumina hydroxide have the large specific surface area of 120 $m^2$/g, compared with that of starting zirconia powder.

  • PDF

Electrical and Mechanical Properties of Epoxy/Micro-sized Alumina Composite and the Effect of Nano-sized Alumina on Those Properties

  • Park, Jae-Jun;Shin, Seong-Sik;Yoon, Chan-Young;Lee, Jae-Young;Park, Joo-Eon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.260-263
    • /
    • 2015
  • Epoxy/micro-sized alumina composite was prepared and the effects of alumina content on the electrical and mechanical properties were investigated in order to develop an insulation material for gas insulated switchgear (GIS). Nano-sized alumina (average particle size: 30 μm) was also incorporated into the epoxy/micro-sized alumina composite. An electrical insulation breakdown strength test was carried out in sphere-sphere electrodes and the data were estimated by Weibull statistical analysis. Tensile strength was measured at a crosshead speed of 10 mm/min using a universal testing machine. Alumina content was varied from 0 wt% to 70 wt%.). As micro-sized alumina content increased, insulation breakdown strength increased until 40 wt% alumina content and decreased after that content. The tensile strength of a neat epoxy system was 82.2 MPa and that value for 60 wt% alumina content was 91.8 MPa, which was 111.7% higher than inthe neat epoxy system. The insulation breakdown strength of micro-sized alumina (60 wt%)/nano-sized alumina (1 phr) glycerol diglycidyl ether (GDE) (1 phr) composite was 54.2 MPa, which was 116% higher than the strength of the system without nano-sized alumina.

The Effect of Porous Support and Intermediate Layer on the Silica-zirconia Membranes for Gas Permeation Performance (실리카-지르코니아 분리막 성능에 대한 다공성 지지체와 중간층의 영향)

  • Lee, Hye Ryeon;Seo, Bongkuk
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • In this study, porous metal (O.D. = 10 mm, length = 10 mm, 316 L SUS, Mott Corp.) and ${\alpha}$-alumina tube (O.D. = 10 mm, length = 50 mm, Pall, German) support was modified with suspension sols, which were consisted of $3{\sim}4{\mu}m$ and 150 nm size of ${\alpha}$-alumina particle in the water or silica-zirconia colloidal sol. The porous support was fabricated by dip coating method for 5 seconds with suspension of alumina particles. After drying at $100^{\circ}C$ for 1 h, it was calcined at $550^{\circ}C$ for 30 min. It was repeated several times in order to decrease big pore on support. The surface roughness and largest pore size on the porous support was decreased by increasing coating times with $3{\sim}4{\mu}m$ size of ${\alpha}$-alumina particle and alumina coating with 150 nm size of ${\alpha}$-alumina particle served as further smoothening the surface and decreasing the pore size of the substrate. And the silica-zirconia membranes were successfully prepared on the modified porous metal and ${\alpha}$-alumina supports, and showed hydrogen permeance in the range of $1.8-8.4{\times}10^{-4}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and $3.3-5.0{\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$, respectively.

Characterization and Microstructure of an Extruded Flat-Tubular-Type Alumina Filter (압출공정에 의한 수 처리용 평관형알루미나 필터의 미세구조와 특성평가)

  • Bae, Byung-Seo;Ha, Jang-Hoon;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.406-412
    • /
    • 2014
  • In this study, flat-tubular-type alumina filters were manufactured using alumina powder of two sizes ($2.4{\mu}m$ ALM-44 and $0.4{\mu}m$ AP 400) by an extrusion process. The manufactured alumina filter was sintered at $1200-1600^{\circ}C$ for 1 h. As particle size increased, the largest pore size, average pore size and porosity increased; but density and linear shrinkage decreased. The alumina filter fabricated using ALM-44 powder sintered at $1500^{\circ}C$ was confirmed as the best water treatment filter after investigation of the bending strength, water permeability and impurity-removal efficiency of the experimental filters. This flat-tubular-type alumina filter is expected to be useful not only for direct water treatment, but also for use as a support filter during coating processes, to control pore size.

A Study on Particle Size with Polymerization Factor in Dispersion Copolymerization of Styrene/n-Butylmethacrylate and Alumina (스티렌/노말 부틸 메타크릴레이트와 알루미나의 분산 공중합에서 중합인자에 따른 입경변화 연구)

  • Bang, Hyun-Su;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.230-240
    • /
    • 2008
  • In order to synthesize polymer particle containing inorganic material, styrene and nbutylmetacrylate were copolymerized with alumina by dispersion polymerization. The ratio in weight of styrene to n-butyl methacrylate was 3:1. Poly(N-vinyl pyrrolidon) and 2,2'-azobis(isobutyronitrile) were added as stabilizer and as initiator, respectively. The change of particle size was investigated with concentration of initiator, the type of medium, the mixed solubility parameter (${\delta}_{mix}$) of medium, and coupling agent. The enhancement in concentration of initiator resulted in slight increase of particle size. The increase of polarizability in medium also yielded the increase of particle size. In case of changing the ratio of isopropanol to distilled water, we could find relationship of $[{\delta}_{mix}]^{-4.01}\;{\propto}$ particle size and $[{\delta}_{mix}]^{-0.83}\;{\propto}$ particle size distribution(PSD). The type and the concentration of coupling agent showed no effect on the particle size and PSD.

Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids (알루미나/산화아연/이산화티타늄 나노유체의 열전도율 측정)

  • Kim Sang Hyun;Choi Sun Rock;Hong Jonggan;Kim Dongsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1065-1073
    • /
    • 2005
  • The thermal conductivity of water- and ethylene glycol-based nanofluids containing alumina $(Al_2O_3)$, zinc oxide (ZnO) and titanium dioxide $(TiO_2)$ nanoparticles is measured by varying the particle diameter and volume fraction. The transient hot-wire method using an anodized tantalum wire for electrical insulation is employed for the measurement. The experimental results show that nanofluids have substantially higher thermal conductivities than those of the base fluid and the ratio of thermal conductivity enhancement increases linearly with the volume fraction. It has been found that the ratio of thermal conductivity enhancement increases with decreasing particle size but no empirical or theoretical correlation can explain the particle-size dependence of the thermal conductivity. This work provides, for the first time to our knowledge, a set of consistent experimental data over a wide range of nanofluid conditions and can therefore serve as a basis for developing theoretical models to predict thermal conduction phenomena in nanofluids.

Hydrodynamic Characteristics of Fine Powders in the Conical Powder-Particle Fluidized Beds (원추형 분립유동층에서 미세 분체의 수력학적 특성)

  • Lee Dong Hyun;Shin Moon Kwon;Kim Eun Mi;Son Seong Yong;Park Byung Sub;Han Gui Young;Yoon Ki June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.310-313
    • /
    • 2005
  • The conical fluidizing system of a binary mixture of Geldart C powders and Geldart A particles was defined as the conical powder-particle fluidized bed. We used a cold conical powder-particle fluidized bed model having a 0.104m-I.D. and 0.6m-high with an apex angle of $10^{\circ}$ for fluidization of a binary powder-particle mixture of 50 $vol\%$ fine carbon black powders (HI-900L, Korea Carbon Black Co.) and coarse alumina particles $(90{\mu}m)$ under different superficial gas velocities (0-0.1 m/s). The differential bed pressure drop increases with increasing gas velocity, and it goes from zero to a maximum value with increasing or decreasing gas velocity. In the conical fluidized beds of fine powders, demarcation velocities of the partial fluidization, full fluidization, partial defluidization was not observed.

  • PDF

Effects of Chemical Composition and Particle Size of Starting Aluminum Source on the Spheroidization in the Flame Fusion Process (화염용융법에 의한 구상 알루미나 제조에 미치는 초기 알루미나 원료의 화학조성과 입도의 영향)

  • Eom, Sun-Hui;Pee, Jae-Hwan;Lee, Jong-Keun;Hwang, Kwang-Taek;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.431-437
    • /
    • 2009
  • Various inorganic fillers improve the thermal conductivity and physical properties of organic products. Alumina has been used a representative filler in the heat radiation sheet for the heat radiation of electric device. The high filling rate of alumina increases the thermal conductivity and properties of products. We successfully developed the spherical alumina by flame fusion process using the oxygen burner with LPG fuel. In the high temperature flame (2500$\sim$3000$^{\circ}C$) of oxygen burner, sprayed powders were melting and then rotated by carrier gas. This surface melting and rotation process made spherical alumina. Especially effects of chemical composition and particle size of stating materials on the melting behavior of starting materials in the flame and spheroidization ratio were investigated. As a result, spheroidization ratio of boehmite and aluminum hydroxide with endothermic reaction of dehydration process was lower than that of the sintered alumina without dehydration reaction.