DOI QR코드

DOI QR Code

Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids

알루미나/산화아연/이산화티타늄 나노유체의 열전도율 측정

  • 김상현 (포항공과대학교 기계공학과) ;
  • 최선락 (포항공과대학교 기계공학과) ;
  • 홍종간 (포항공과대학교 기계공학과) ;
  • 김동식 (포항공과대학교 기계공학과)
  • Published : 2005.09.01

Abstract

The thermal conductivity of water- and ethylene glycol-based nanofluids containing alumina $(Al_2O_3)$, zinc oxide (ZnO) and titanium dioxide $(TiO_2)$ nanoparticles is measured by varying the particle diameter and volume fraction. The transient hot-wire method using an anodized tantalum wire for electrical insulation is employed for the measurement. The experimental results show that nanofluids have substantially higher thermal conductivities than those of the base fluid and the ratio of thermal conductivity enhancement increases linearly with the volume fraction. It has been found that the ratio of thermal conductivity enhancement increases with decreasing particle size but no empirical or theoretical correlation can explain the particle-size dependence of the thermal conductivity. This work provides, for the first time to our knowledge, a set of consistent experimental data over a wide range of nanofluid conditions and can therefore serve as a basis for developing theoretical models to predict thermal conduction phenomena in nanofluids.

Keywords

References

  1. Keblinski, P., Phillpot, S. R., Choi, S. U. S. and Eastman, J. A., 2002, 'Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),' International Journal of Heat and Mass Transfer, Vol. 45, pp. 855-863 https://doi.org/10.1016/S0017-9310(01)00175-2
  2. Eastman, A., Choi, S. U. S., Li, S., Yu, W. and Thompson, L. J., 2001, 'Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,' Applied Physics Letters, Vol. 78, pp. 718-720 https://doi.org/10.1063/1.1341218
  3. Xuan, Y. and Roetzel, W., 2000, 'Conceptions for Heat Transfer Correlation of Nanofluids,' International Journal of Heat and Mass Transfer, Vol. 43, pp. 3701-3707 https://doi.org/10.1016/S0017-9310(99)00369-5
  4. Lee, S., Choi, S.U.S., Li, S. and Eastman, J.A., 1999, 'Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,' Journal of Heat Transfer, Vol. 121, pp. 280-289 https://doi.org/10.1115/1.2825978
  5. Maxwell, J.C., 1881, 'A Treatise on Electricity and Magnetism,' second ed., Vol. 1, Clarendon Press, Oxford, UK, p. 435
  6. Masuda, H., Ebata, A., Teramae, K. and Hishinuma, N., 1993, 'Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles,' Netsu Bussei, Vol. 4, pp. 227-233
  7. Xie, H., Wang, J., Xi, T. and Liu, Y., 2002, 'Thermal Conductivity of Suspensions Containing Nanosized SiC Particles,' International Journal of Thermophysics, Vol. 23, pp. 571-580 https://doi.org/10.1023/A:1015121805842
  8. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A., 2001, 'Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,' Applied Physics Letters, Vol. 79, pp. 2252~2254 https://doi.org/10.1063/1.1408272
  9. Xie, H., Lee, H., Youn, W. and Choi, M., 2003, 'Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities,' Journal of Applied Physics, Vol. 94, pp. 4967-4971 https://doi.org/10.1063/1.1613374
  10. Das, S. K., Putra, N., Thiesen, P. and Roetzel, W., 2003, 'Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,' Journal ofHeat Transfer, Vol. 125, pp. 567-574 https://doi.org/10.1115/1.1571080
  11. Jang, S. P. and Choi, S. U. S., 2004, 'The Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,' Appl. Phys. Lett. (In Review) https://doi.org/10.1063/1.1756684
  12. Carslaw, H. S. and Jaeger, J. C., 1959, Conduction of heat in solids 2nd Ed., Oxford University Press
  13. Duenas, S., Castan, E. and Barbolla, J., 1999, 'Use of Anodic Tantalum Pentoxide for High-Density Capacitor Fabrication,' Journal of materials science: Materials in electronics, Vol. 10, pp. 379-384 https://doi.org/10.1023/A:1008901624514
  14. Ramire, M.L.V. et al, 2000, 'Reference Data for the Thermal Conductivity of Saturated Liquid Toluene over a Wide Range of Temperature,' Journal of Physical and Chemical Reference Data, Vol. 29, pp. 133-139 https://doi.org/10.1063/1.556057
  15. Incropera, F. P. and DeWitt, D. P., 1996, 'Fundamentals of Heat and Mass Transfer 4th edition,' John Wiley & Sons
  16. Mafune, F., Kohno, J., Takeda, Y. and Kondow, T., 2002, 'Growth of Gold Clusters into Nanoparticles in a Solution Following Laser-Induced Fragmentation,' Journal of Physics and Chemistry B, Vol. 106, pp. 8555-8561 https://doi.org/10.1021/jp020786i
  17. Jang, S. P., 2004, 'Thermal Conductivities of Nanofluids,' Trans of the KSME B, Vol. 28, pp. 968-975 https://doi.org/10.3795/KSME-B.2004.28.8.968

Cited by

  1. An Experimental Study of Transient Hot-wire Sensor Module for Measuring Thermal Diffusivity of Nanofluids vol.35, pp.2, 2011, https://doi.org/10.3795/KSME-B.2011.35.2.113
  2. Measuring Convective Heat Transfer Coefficients of Nanofluids over a Circular Fine Wire Maintaining a Constant Temperature vol.36, pp.1, 2012, https://doi.org/10.3795/KSME-B.2012.36.1.009
  3. Apparatus for Comparing Thermal Conductivity of Nanofluids and Base Fluid Using Simultaneously Measured Resistance Variation Signals from Two Hot Wire Sensors vol.39, pp.1, 2015, https://doi.org/10.3795/KSME-B.2015.39.1.029