Browse > Article
http://dx.doi.org/10.3795/KSME-B.2005.29.9.1065

Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids  

Kim Sang Hyun (포항공과대학교 기계공학과)
Choi Sun Rock (포항공과대학교 기계공학과)
Hong Jonggan (포항공과대학교 기계공학과)
Kim Dongsik (포항공과대학교 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.29, no.9, 2005 , pp. 1065-1073 More about this Journal
Abstract
The thermal conductivity of water- and ethylene glycol-based nanofluids containing alumina $(Al_2O_3)$, zinc oxide (ZnO) and titanium dioxide $(TiO_2)$ nanoparticles is measured by varying the particle diameter and volume fraction. The transient hot-wire method using an anodized tantalum wire for electrical insulation is employed for the measurement. The experimental results show that nanofluids have substantially higher thermal conductivities than those of the base fluid and the ratio of thermal conductivity enhancement increases linearly with the volume fraction. It has been found that the ratio of thermal conductivity enhancement increases with decreasing particle size but no empirical or theoretical correlation can explain the particle-size dependence of the thermal conductivity. This work provides, for the first time to our knowledge, a set of consistent experimental data over a wide range of nanofluid conditions and can therefore serve as a basis for developing theoretical models to predict thermal conduction phenomena in nanofluids.
Keywords
Nanofluid; Thermal Conductivity; Particle Size;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ramire, M.L.V. et al, 2000, 'Reference Data for the Thermal Conductivity of Saturated Liquid Toluene over a Wide Range of Temperature,' Journal of Physical and Chemical Reference Data, Vol. 29, pp. 133-139   DOI   ScienceOn
2 Incropera, F. P. and DeWitt, D. P., 1996, 'Fundamentals of Heat and Mass Transfer 4th edition,' John Wiley & Sons
3 Mafune, F., Kohno, J., Takeda, Y. and Kondow, T., 2002, 'Growth of Gold Clusters into Nanoparticles in a Solution Following Laser-Induced Fragmentation,' Journal of Physics and Chemistry B, Vol. 106, pp. 8555-8561   DOI   ScienceOn
4 Jang, S. P., 2004, 'Thermal Conductivities of Nanofluids,' Trans of the KSME B, Vol. 28, pp. 968-975   과학기술학회마을   DOI
5 Jang, S. P. and Choi, S. U. S., 2004, 'The Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,' Appl. Phys. Lett. (In Review)   DOI   ScienceOn
6 Carslaw, H. S. and Jaeger, J. C., 1959, Conduction of heat in solids 2nd Ed., Oxford University Press
7 Duenas, S., Castan, E. and Barbolla, J., 1999, 'Use of Anodic Tantalum Pentoxide for High-Density Capacitor Fabrication,' Journal of materials science: Materials in electronics, Vol. 10, pp. 379-384   DOI
8 Xie, H., Lee, H., Youn, W. and Choi, M., 2003, 'Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities,' Journal of Applied Physics, Vol. 94, pp. 4967-4971   DOI   ScienceOn
9 Das, S. K., Putra, N., Thiesen, P. and Roetzel, W., 2003, 'Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,' Journal ofHeat Transfer, Vol. 125, pp. 567-574   DOI   ScienceOn
10 Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A., 2001, 'Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,' Applied Physics Letters, Vol. 79, pp. 2252~2254   DOI   ScienceOn
11 Lee, S., Choi, S.U.S., Li, S. and Eastman, J.A., 1999, 'Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,' Journal of Heat Transfer, Vol. 121, pp. 280-289   DOI
12 Masuda, H., Ebata, A., Teramae, K. and Hishinuma, N., 1993, 'Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles,' Netsu Bussei, Vol. 4, pp. 227-233
13 Xie, H., Wang, J., Xi, T. and Liu, Y., 2002, 'Thermal Conductivity of Suspensions Containing Nanosized SiC Particles,' International Journal of Thermophysics, Vol. 23, pp. 571-580   DOI
14 Maxwell, J.C., 1881, 'A Treatise on Electricity and Magnetism,' second ed., Vol. 1, Clarendon Press, Oxford, UK, p. 435
15 Keblinski, P., Phillpot, S. R., Choi, S. U. S. and Eastman, J. A., 2002, 'Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),' International Journal of Heat and Mass Transfer, Vol. 45, pp. 855-863   DOI   ScienceOn
16 Eastman, A., Choi, S. U. S., Li, S., Yu, W. and Thompson, L. J., 2001, 'Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,' Applied Physics Letters, Vol. 78, pp. 718-720   DOI   ScienceOn
17 Xuan, Y. and Roetzel, W., 2000, 'Conceptions for Heat Transfer Correlation of Nanofluids,' International Journal of Heat and Mass Transfer, Vol. 43, pp. 3701-3707   DOI   ScienceOn