• Title/Summary/Keyword: allozyme variation

Search Result 52, Processing Time 0.026 seconds

Lack of allozyme variation in the two carnivorous, terrestrial herbs Utricularia bifida and Utricularia caerulea (Lentibulariaceae) co-occurring on wetlands in South Korea: Inference of population history (한반도 남부 지방 습지에 같이 자생하는 식충 육상 초본 2종 땅귀개 및 이삭귀개 (통발과)의 알로자임 변이의 결여: 집단의 역사 추론)

  • Chung, Mi Yoon;Lopez-Pujol, Jordi;Chung, Myong Gi
    • Korean Journal of Plant Taxonomy
    • /
    • v.47 no.4
    • /
    • pp.297-303
    • /
    • 2017
  • In central and southern Korea, the two small insectivorous, terrestrial herbs, Utricularia bifida and U. caerulea, often co-occur at wet locations (or in wetlands). The Korean Peninsula (with central China and northern Japan) constitutes the northern edge of their distribution, as their main range is subtropical and tropical Asia. The Korean populations of both species are very likely of post-glacial origin, given that warm-temperate vegetation was absent from the Korean Peninsula during the Last Glacial Maximum. Two hypotheses of the post-glacial colonization of the peninsula can be formulated; first, if current populations were founded by propagules coming from a single ancestral population (i.e., a single refugium), we would expect low levels of genetic diversity. Alternatively, if contemporary Korean populations originated from multiple sources (multiple refugia), we would expect high levels of genetic variation. To test which is more likely, we surveyed the degree of allozyme variation at 20 loci in ten populations for each of the two species from southern Korea. We found no allozyme variation within each species. However, their aquatic congener U. australis exhibited allozyme polymorphism across Japan (four polymorphic loci at three enzyme systems). We suggest that southern Korean populations of Utricularia bifida and U. caerulea were established by a single introduction event from a genetically depauperate ancestral population.

Genetic variation in five species of Korean Orostachys (Crassulaceae) (한국산 바위솔속(돌나물과) 5종에 대한 유전적 변이)

  • Kim, Hyung-Deok;Park, Ki-Ryong
    • Korean Journal of Plant Taxonomy
    • /
    • v.35 no.4
    • /
    • pp.295-311
    • /
    • 2005
  • Starch gel electrophoretic studies using 24 populations of five Korean Orostachys species were conducted to investigate allozyme variation and to test hypotheses of systematic relationships among species. The resulting phenogram showed that the populations of five Korean Orostachys species were divided into two major groups. And they were concordant with molecular and morphological data in suggesting that Orostachys was divided into two groups corresponding to the subsect. Appendiculatae and subsect. Orostachys. The low genetic identities among Korean Orostachys species indicated that the species of Orostachys have diverged gradually through the model of geographical species. Comparing the previous genetic data from the species with similar life history and mode of reproduction, most of Korean Orostachys species revealed a significant low genetic variation, while the widespread O. japonicus showed a relatively high genetic variation among the Korean species. This kind of genetic variation pattern might be the results of the isolated habitats, limited numbers of individuals within the populations, destruction of habitats, inbreeding and asexual reproduction in Korean Orostachys populations. The Jungdongjin population (POP 21) of O. malocophyllus was genetically unrelated with remaining populations of the same species, and this interpretation was consistent to the results from the previous palynological and morphological studies. Our allozyme data supported the taxonomic treatment of recently proposed taxa, O. iwarenge (Makino) Hara for. magnus and O. margaritifolius.

Genetic Structure of Pinus rigida Mill. in an Expanding Population Originating from a Few Founder Trees (수본(數本)의 양친수(兩親樹)에 의해 전파증식(傳播増殖)중에 있는 리기다소나무 집단(集團)의 유전적(遺傳的) 구조(構造))

  • Chung, Min Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.72 no.1
    • /
    • pp.16-26
    • /
    • 1986
  • Allozyme study on a small pitch pine stand originating and expanded rather rapidly from a few founder trees indicated that the colonization of the pitch pine population was made progressively from the place where the founder trees located to another by moving in cohorts of seeds from a limited number of family or genetically closely related family groups in line with the succeeding generations. This pattern of migration and colonization resulted marked differences in allelic and genotypic frequencies at many of the allozyme loci between the initially colonized subpopulation on the south-facing slope and the lately colonized subpopulation on north-facing slope of a hill. It appeared that gene fixation due to inbreeding and genetic drift occurred at some loci in the pitch pine population or subpopulations. However, even in t 1e inbreeding small pitch pine population or subpopulations, a comparatively large amount of genetic diversity or heterozygosity was maintained due to the high levels of gene recombination at many of the gene loci and natural selections favoring for heterozygotes.

  • PDF

Comparative Genetic Diversity in Natural and Hatchery Populations of Indian Major Carps (C. catla and L. rohita)

  • Rana, R.S.;Bhat, K.V.;Lakhanpal, S.;Lakra, W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1197-1203
    • /
    • 2004
  • This study deals with the characterization of three populations (two hatchery and one natural) of Indian major carps Catla catla and Labeo rohita from different locations in India. The genetics of Indian major carps has been completely obscure and this is the first report on comparative allozyme variations in natural and hatchery population. The total 10 biochemical genetic markers used to measure interspecific and intraspecific level of diversity. The allele frequency data indicate different level of genetic variability in three populations. The hatchery population exhibited least polymorphism, low level of heterozygosity and genetic diversity.

Allozyme Variation of 6-Phosphogluconate Dehydrogenase in the Freshwater Snail Genus Gyraulus (Pulmonata : Planorbidae)

  • Younghun Jung;Park, Yun-Kyu;Chung, Pyung-Rim
    • The Korean Journal of Malacology
    • /
    • v.16 no.1_2
    • /
    • pp.11-16
    • /
    • 2000
  • The electrophoretic banding patterns of 6-phosphogluconate dehydrogenase (PGD) in the two different chromosomal ploidy groups of Gyraulus were compared. The monomeric or dimeric banding patterns or allelic variations in a locus of PGD were observed in four diploid populations (Osan, Sohre, Kimpo and Kangwha) of G. convexiusculus occurring in Korea, whereas the isozyme banding patterns encoded by at least 3 different loci were shown in the tetraploid populations of G. (Torquis) groups collected from Michigan, the U.S.A. Of 3 different tetraploid groups, G. (T.) circumstriatus group showed 3 monomorphic isozyme banding patterns, and the other 2 populations showed some allelic variations. Such results provided good evidence to differentiate tetraploid subgenus Torquis group from the diploid Gyraulus populations.

  • PDF

The genetically healthy terrestrial orchid Liparis krameri on southern Korean Peninsula

  • CHUNG, Mi Yoon;CHUNG, Jae Min;SON, Sungwon;MAO, Kangshan;LOPEZ-PUJOL, Jordi;CHUNG, Myong Gi
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.4
    • /
    • pp.324-333
    • /
    • 2019
  • Neutral genetic diversity found in plant species usually leaves an indelible footprint of historical events. Korea's main mountain range (referred to as the Baekdudaegan [BDDG]), is known to have served as a glacial refugium primarily for the boreal and temperate flora of northeastern Asia. In addition, life-history traits (life forms, geographic range, and breeding systems) influence the within- and among-population genetic diversity of seed plant species. For example, selfing species harbor significantly less within-population genetic variation than that of predominantly outcrossers. A previous study of two Liparis species (L. makinoana and L. kumokiri) emphasizes the role of the abovementioned factors shaping the levels of genetic diversity. Liparis makinoana, mainly occurring on the BDDG and self-incompatible, harbors high levels of within-population genetic diversity (expected heterozygosity, HeP = 0.319), whereas there is no allozyme variation (HeP = 0.000) in L. kumokiri, which is self-compatible and mainly occurs in lowland hilly areas. To determine if this trend is also found in other congeners, we sampled five populations of L. krameri from the southern part of the Korean Peninsula and investigated the allozyme-based genetic diversity at 15 putative loci. The somewhat intermediate levels of within-population genetic variation (HeP = 0.145) found in L. krameri are most likely due to its occurrence in mountainous areas that, despite being outside of the main ridge of the BDDG, still served as refugia, and a self-incompatible breeding system. Management strategies are suggested for L. krameri and L. makinoana based on the levels and distribution of genetic diversity and inbreeding.