Browse > Article
http://dx.doi.org/10.11110/kjpt.2019.49.4.324

The genetically healthy terrestrial orchid Liparis krameri on southern Korean Peninsula  

CHUNG, Mi Yoon (Division of Life Science and the Research Institute of Natural Science (RINS), Gyeongsang National University)
CHUNG, Jae Min (Division of Plant Resources, Korea National Arboretum)
SON, Sungwon (Division of Plant Resources, Korea National Arboretum)
MAO, Kangshan (Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University)
LOPEZ-PUJOL, Jordi (Botanic Institute of Barcelona (IBB, CSIC-ICUB))
CHUNG, Myong Gi (Department of Biology and RINS, Gyeongsang National University)
Publication Information
Korean Journal of Plant Taxonomy / v.49, no.4, 2019 , pp. 324-333 More about this Journal
Abstract
Neutral genetic diversity found in plant species usually leaves an indelible footprint of historical events. Korea's main mountain range (referred to as the Baekdudaegan [BDDG]), is known to have served as a glacial refugium primarily for the boreal and temperate flora of northeastern Asia. In addition, life-history traits (life forms, geographic range, and breeding systems) influence the within- and among-population genetic diversity of seed plant species. For example, selfing species harbor significantly less within-population genetic variation than that of predominantly outcrossers. A previous study of two Liparis species (L. makinoana and L. kumokiri) emphasizes the role of the abovementioned factors shaping the levels of genetic diversity. Liparis makinoana, mainly occurring on the BDDG and self-incompatible, harbors high levels of within-population genetic diversity (expected heterozygosity, HeP = 0.319), whereas there is no allozyme variation (HeP = 0.000) in L. kumokiri, which is self-compatible and mainly occurs in lowland hilly areas. To determine if this trend is also found in other congeners, we sampled five populations of L. krameri from the southern part of the Korean Peninsula and investigated the allozyme-based genetic diversity at 15 putative loci. The somewhat intermediate levels of within-population genetic variation (HeP = 0.145) found in L. krameri are most likely due to its occurrence in mountainous areas that, despite being outside of the main ridge of the BDDG, still served as refugia, and a self-incompatible breeding system. Management strategies are suggested for L. krameri and L. makinoana based on the levels and distribution of genetic diversity and inbreeding.
Keywords
allozymes; Baekdudaegan; Bayesian clustering approach; glacial refugium; Liparis; PCoA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mitton, J. B., Y. B. Linhart, K. B. Sturgeon and J. L. Hamrick. 1979. Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. Journal of Heredity 70: 86-89.   DOI
2 Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.   DOI
3 Nei M., T. Maruyama and R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1-10.   DOI
4 Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155.   DOI
5 Oh, G. S., M. Y. Chung, S. G. Chung and M. G. Chung. 2001. Contrasting breeding systems: Liparis kumokiri and L. makinoana (Orchidaceae). Annales Botanici Fennici 38: 281-284.
6 Olson, M. S., J. L. Hamrick and R. C. Moore. 2016. Breeding systems, mating systems, and gender determination in angiosperm trees. In Comparative and Evolutionary Genomics of Angiosperm Trees. Groover, A. and Q. Cronk (eds.), Springer, Cham. Pp. 139-158.
7 Ottewell, K. M., D. C. Bickerton, M. Byrne and A. J. Lowe. 2016. Bridging the gap: a genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Diversity and Distributions 22: 174-188.   DOI
8 Peakall, R. and P. E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics 28: 2537-2539.   DOI
9 Pritchard, J. K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.   DOI
10 Pritchard, J. K., X. Wen and D. Falush. 2010. Documentation for structure software: version 2.3. Retrieved Jul. 6, 2019, available from http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.4/structure_doc.pdf.
11 Ritland, K. and S. Jain. 1981. A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47: 35-52.   DOI
12 Schnabel, A., J. D. Nason and J. L. Hamrick. 1998. Understanding the population genetic structure of Gleditsia triacanthos L.: seed dispersal and variation in female reproductive success. Molecular Ecology 7: 819-832.   DOI
13 Sezen, U. U., R. L. Chazdon and K. E. Holsinger. 2009. Proximity is not a proxy for parentage in an animal-dispersed neotropical canopy palm. Proceedings of the Royal Society of London. Series B: Biological Sciences 276: 2037-2044.   DOI
14 Suetsugu, K. 2019. Rain-triggered self-pollination in Liparis kumokiri, an orchid that blooms during the rainy season. Ecology 100: e02683.
15 Takashima, M.., J. Hasegawa and T. Yukawa. 2016. Oreorchis coreana (Orchidaceae), a new addition to the flora of Japan. Acta Phytotaxonomica et Geobotanica 67: 61-66.
16 Trapnell, D. W. and J. L. Hamrick. 2004. Partitioning nuclear and chloroplast variation at multiple spatial scales in the neotropical epiphytic orchid, Laelia rubescens. Molecular Ecology 13: 2655-2666.   DOI
17 Troupin, D., R. Nathan and G. G. Vendramin. 2006. Analysis of spatial genetic structure in an expanding Pinus halepensis population reveals development of fine-scale genetic clustering over time. Molecular Ecology 15: 3617-3630.   DOI
18 Vekemans, X. and O. J. Hardy. 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13: 921-935.   DOI
19 Arditti, J. and A. K. A. Ghani. 2000. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145: 367-421.   DOI
20 Burczyk, J., W. T. Adams, D. S. Birkes and I. J. Chybicki. 2006. Using genetic markers to directly estimate gene flow and reproductive success parameters in plants on the basis of naturally regenerated seedlings. Genetics 173: 363-372.   DOI
21 Chen, X., P. Ormerod and J. J. Wood. 2009. Liparis Richard. In Flora of China, Vol. 25 (Orchidaceae). Wu, Z. Y., P. H. Raven and D. Y. Hong (eds.), Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 211-228.
22 Borzee, A., J. L. Santos, S. Sanchez-Ramirez, Y. Bae, K. Heo, Y. Jang and M. J. Jowers. 2017. Phylogeographic and population insights of the Asian common toad (Bufo gargarizans) in Korea and China: population isolation and expansions as response to the ice ages. PeerJ 5: e4044.   DOI
23 Chung, M. Y., J. D. Nason and M. G. Chung. 2005. Patterns of hybridization and population genetic structure in the terrestrial orchids Liparis kumokiri and Liparis makinoana (Orchidaceae) in sympatric populations. Molecular Ecology 14: 4389-4402.   DOI
24 Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.   DOI
25 Whitehead, M. R., R. Lanfear, R. J. Mitchell and J. D. Karron. 2018. Plant mating systems often vary widely among populations. Frontiers in Ecology and Evolution 6: 38.   DOI
26 Wright, S. 1965. The interpretation of population structure by Fstatistics with special regard to systems of mating. Evolution 19: 395-420.   DOI
27 Yeh, F. C., R. C. Yang and T. B. J. Boyle. 1999. POPGENE version 1.31: Microsoft Windows-based freeware for population genetic analysis. Quick Users' Guide. University of Alberta, Edmonton.
28 Yukawa, T., D. Kawaguchi, A. Mukai and Y. Komaki. 2012. Discovery of Geodorum densiflorum (Orchidaceae) on the Ogasawara (Bonin) Islands: a case of ongoing colonization subsequent to long-distance dispersal. Bulletin of the National Museum of Nature and Science. Series B, Botany 38: 131-137.
29 Chung, M. Y., J. López-Pujol and M. G. Chung. 2017. The role of the Baekdudaegan (Korean Peninsula) as a major glacial refugium for plant species: a priority for conservation. Biological Conservation 206: 236-248.   DOI
30 Chung, M. Y., J. López-Pujol, S. Son, G. U. Suh, T. Yukawa and M. G. Chung. 2018b. Patterns of genetic diversity in rare and common orchids focusing on the Korean Peninsula: implications for conservation. The Botanical Review 84: 1-25.   DOI
31 Chung, M. Y., M.-O. Moon, J. López-Pujol, M. Maki, T. Yamashiro, T. Yukawa, N. Sugiura, Y.-I. Lee and M. G. Chung. 2013. Was Jeju Island a glacial refugium for East Asian warm-temperate plants? Insights from the homosporous fern Selliguea hastata (Polypodiaceae). American Journal of Botany 100: 2240-2249.   DOI
32 Chung, M. Y., C.-W. Park, E. R. Myers and M. G. Chung. 2007. Contrasting levels of genetic diversity between the common, self-compatible Liparis kumokiri and rare, self-incompatible Liparis makinoana (Orchidaceae) in South Korea. Botanical Journal of the Linnean Society 153: 41-48.   DOI
33 Chung, M. Y., S. Son, G. U. Suh, S. Herrando-Moraira, C. H. Lee, J. Lopez-Pujol and M. G. Chung. 2018a. The Korean Baekdudaegan Mountains: a glacial refugium and a biodiversity hotspot that needs to be conserved. Frontiers in Genetics 9: 489.   DOI
34 Cornuet J. M. and G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014.   DOI
35 Dolezal, J., J. Altman, M. Kopecky, T. Cerny, S. Janecek, M. Bartos, P. Petrik, M. Srutek, J. Leps and J.-S. Song. 2012. Plant diversity changes during the postglacial in East Asia: insights from forest refugia on Halla volcano, Jeju Island. PLoS ONE 7: e33065.   DOI
36 Duminil, J., O. J. Hardy and R. J. Petit. 2009. Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evolutionary Biology 9: 177.   DOI
37 Earl, D. A. and B. M. vonHoldt, 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359-361.   DOI
38 El Mousadik, A. and R. J. Petit. 1996. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoretical and Applied Genetics 92: 832-839.   DOI
39 Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620.   DOI
40 Gonzales, E., J. L. Hamrick, P. E. Smouse, D. W. Trapnell and R. Peakall. 2010. The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae). Journal of Heredity 101: 133-143.   DOI
41 Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86: 485-486.   DOI
42 Grivet, D., P. E. Smouse and V. L. Sork. 2005. A novel approach to an old problem: tracking dispersed seeds. Molecular Ecology 14: 3585-3595.   DOI
43 Hamrick, J. L. 2004. Response of forest trees to global environmental changes. Forest Ecology and Management 197: 323-335.   DOI
44 Hamrick, J. L., H. M. Blanton and K. J. Hamrick. 1989. The genetic structure of geographically marginal populations of ponderosa pine. American Journal of Botany 76: 1559-1568.   DOI
45 Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources. Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S. Weir (eds.), Sinauer Associates, Sunderland, MA. Pp. 43-63.
46 Hamrick, J. L. and M. J. W. Godt. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351: 1291-1298.   DOI
47 Hardesty, B. D., S. P. Hubbell and E. Bermingham. 2006. Genetic evidence of frequent long-distance recruitment in a vertebratedispersed tree. Ecology Letters 9: 516-525.   DOI
48 Hardy, O. J. and X. Vekemans. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618-620.   DOI
49 Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577-586.   DOI
50 Janes, J. K., J. M. Miller, J. R. Dupuis, R. M. Malenfant, J. C. Gorrell, C. I. Cullingham and R. L. Andrew. 2017. The K = 2 conundrum. Molecular Ecology 26: 3594-3602.   DOI
51 Jordano, P., C. Garcia, J. A. Godoy and J. L. Garcia-Castano. 2007. Differential contribution of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences of the United States of America 104: 3278-3282.   DOI
52 Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 65-95.   DOI
53 Luikart G., F. W. Allendorf, J.-M. Cornuet and W. B. Sherwin. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity 89: 238-247.   DOI