DOI QR코드

DOI QR Code

The genetically healthy terrestrial orchid Liparis krameri on southern Korean Peninsula

  • CHUNG, Mi Yoon (Division of Life Science and the Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • CHUNG, Jae Min (Division of Plant Resources, Korea National Arboretum) ;
  • SON, Sungwon (Division of Plant Resources, Korea National Arboretum) ;
  • MAO, Kangshan (Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University) ;
  • LOPEZ-PUJOL, Jordi (Botanic Institute of Barcelona (IBB, CSIC-ICUB)) ;
  • CHUNG, Myong Gi (Department of Biology and RINS, Gyeongsang National University)
  • Received : 2019.11.20
  • Accepted : 2019.12.27
  • Published : 2019.12.30

Abstract

Neutral genetic diversity found in plant species usually leaves an indelible footprint of historical events. Korea's main mountain range (referred to as the Baekdudaegan [BDDG]), is known to have served as a glacial refugium primarily for the boreal and temperate flora of northeastern Asia. In addition, life-history traits (life forms, geographic range, and breeding systems) influence the within- and among-population genetic diversity of seed plant species. For example, selfing species harbor significantly less within-population genetic variation than that of predominantly outcrossers. A previous study of two Liparis species (L. makinoana and L. kumokiri) emphasizes the role of the abovementioned factors shaping the levels of genetic diversity. Liparis makinoana, mainly occurring on the BDDG and self-incompatible, harbors high levels of within-population genetic diversity (expected heterozygosity, HeP = 0.319), whereas there is no allozyme variation (HeP = 0.000) in L. kumokiri, which is self-compatible and mainly occurs in lowland hilly areas. To determine if this trend is also found in other congeners, we sampled five populations of L. krameri from the southern part of the Korean Peninsula and investigated the allozyme-based genetic diversity at 15 putative loci. The somewhat intermediate levels of within-population genetic variation (HeP = 0.145) found in L. krameri are most likely due to its occurrence in mountainous areas that, despite being outside of the main ridge of the BDDG, still served as refugia, and a self-incompatible breeding system. Management strategies are suggested for L. krameri and L. makinoana based on the levels and distribution of genetic diversity and inbreeding.

Keywords

References

  1. Arditti, J. and A. K. A. Ghani. 2000. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145: 367-421. https://doi.org/10.1046/j.1469-8137.2000.00587.x
  2. Borzee, A., J. L. Santos, S. Sanchez-Ramirez, Y. Bae, K. Heo, Y. Jang and M. J. Jowers. 2017. Phylogeographic and population insights of the Asian common toad (Bufo gargarizans) in Korea and China: population isolation and expansions as response to the ice ages. PeerJ 5: e4044. https://doi.org/10.7717/peerj.4044
  3. Burczyk, J., W. T. Adams, D. S. Birkes and I. J. Chybicki. 2006. Using genetic markers to directly estimate gene flow and reproductive success parameters in plants on the basis of naturally regenerated seedlings. Genetics 173: 363-372. https://doi.org/10.1534/genetics.105.046805
  4. Chen, X., P. Ormerod and J. J. Wood. 2009. Liparis Richard. In Flora of China, Vol. 25 (Orchidaceae). Wu, Z. Y., P. H. Raven and D. Y. Hong (eds.), Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 211-228.
  5. Chung, M. Y., J. D. Nason and M. G. Chung. 2005. Patterns of hybridization and population genetic structure in the terrestrial orchids Liparis kumokiri and Liparis makinoana (Orchidaceae) in sympatric populations. Molecular Ecology 14: 4389-4402. https://doi.org/10.1111/j.1365-294X.2005.02738.x
  6. Chung, M. Y., J. López-Pujol and M. G. Chung. 2017. The role of the Baekdudaegan (Korean Peninsula) as a major glacial refugium for plant species: a priority for conservation. Biological Conservation 206: 236-248. https://doi.org/10.1016/j.biocon.2016.11.040
  7. Chung, M. Y., J. López-Pujol, S. Son, G. U. Suh, T. Yukawa and M. G. Chung. 2018b. Patterns of genetic diversity in rare and common orchids focusing on the Korean Peninsula: implications for conservation. The Botanical Review 84: 1-25. https://doi.org/10.1007/s12229-017-9190-5
  8. Chung, M. Y., M.-O. Moon, J. López-Pujol, M. Maki, T. Yamashiro, T. Yukawa, N. Sugiura, Y.-I. Lee and M. G. Chung. 2013. Was Jeju Island a glacial refugium for East Asian warm-temperate plants? Insights from the homosporous fern Selliguea hastata (Polypodiaceae). American Journal of Botany 100: 2240-2249. https://doi.org/10.3732/ajb.1300134
  9. Chung, M. Y., C.-W. Park, E. R. Myers and M. G. Chung. 2007. Contrasting levels of genetic diversity between the common, self-compatible Liparis kumokiri and rare, self-incompatible Liparis makinoana (Orchidaceae) in South Korea. Botanical Journal of the Linnean Society 153: 41-48. https://doi.org/10.1111/j.1095-8339.2007.00581.x
  10. Chung, M. Y., S. Son, G. U. Suh, S. Herrando-Moraira, C. H. Lee, J. Lopez-Pujol and M. G. Chung. 2018a. The Korean Baekdudaegan Mountains: a glacial refugium and a biodiversity hotspot that needs to be conserved. Frontiers in Genetics 9: 489. https://doi.org/10.3389/fgene.2018.00489
  11. Cornuet J. M. and G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014. https://doi.org/10.1093/genetics/144.4.2001
  12. Dolezal, J., J. Altman, M. Kopecky, T. Cerny, S. Janecek, M. Bartos, P. Petrik, M. Srutek, J. Leps and J.-S. Song. 2012. Plant diversity changes during the postglacial in East Asia: insights from forest refugia on Halla volcano, Jeju Island. PLoS ONE 7: e33065. https://doi.org/10.1371/journal.pone.0033065
  13. Duminil, J., O. J. Hardy and R. J. Petit. 2009. Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evolutionary Biology 9: 177. https://doi.org/10.1186/1471-2148-9-177
  14. Earl, D. A. and B. M. vonHoldt, 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7
  15. El Mousadik, A. and R. J. Petit. 1996. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoretical and Applied Genetics 92: 832-839. https://doi.org/10.1007/BF00221895
  16. Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  17. Gonzales, E., J. L. Hamrick, P. E. Smouse, D. W. Trapnell and R. Peakall. 2010. The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae). Journal of Heredity 101: 133-143. https://doi.org/10.1093/jhered/esp101
  18. Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86: 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
  19. Grivet, D., P. E. Smouse and V. L. Sork. 2005. A novel approach to an old problem: tracking dispersed seeds. Molecular Ecology 14: 3585-3595. https://doi.org/10.1111/j.1365-294X.2005.02680.x
  20. Hamrick, J. L. 2004. Response of forest trees to global environmental changes. Forest Ecology and Management 197: 323-335. https://doi.org/10.1016/j.foreco.2004.05.023
  21. Hamrick, J. L., H. M. Blanton and K. J. Hamrick. 1989. The genetic structure of geographically marginal populations of ponderosa pine. American Journal of Botany 76: 1559-1568. https://doi.org/10.1002/j.1537-2197.1989.tb15141.x
  22. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources. Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S. Weir (eds.), Sinauer Associates, Sunderland, MA. Pp. 43-63.
  23. Hamrick, J. L. and M. J. W. Godt. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351: 1291-1298. https://doi.org/10.1098/rstb.1996.0112
  24. Hardesty, B. D., S. P. Hubbell and E. Bermingham. 2006. Genetic evidence of frequent long-distance recruitment in a vertebratedispersed tree. Ecology Letters 9: 516-525. https://doi.org/10.1111/j.1461-0248.2006.00897.x
  25. Hardy, O. J. and X. Vekemans. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618-620. https://doi.org/10.1046/j.1471-8286.2002.00305.x
  26. Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577-586. https://doi.org/10.2307/1934145
  27. Janes, J. K., J. M. Miller, J. R. Dupuis, R. M. Malenfant, J. C. Gorrell, C. I. Cullingham and R. L. Andrew. 2017. The K = 2 conundrum. Molecular Ecology 26: 3594-3602. https://doi.org/10.1111/mec.14187
  28. Jordano, P., C. Garcia, J. A. Godoy and J. L. Garcia-Castano. 2007. Differential contribution of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences of the United States of America 104: 3278-3282. https://doi.org/10.1073/pnas.0606793104
  29. Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 65-95. https://doi.org/10.1146/annurev.es.15.110184.000433
  30. Luikart G., F. W. Allendorf, J.-M. Cornuet and W. B. Sherwin. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity 89: 238-247. https://doi.org/10.1093/jhered/89.3.238
  31. Mitton, J. B., Y. B. Linhart, K. B. Sturgeon and J. L. Hamrick. 1979. Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. Journal of Heredity 70: 86-89. https://doi.org/10.1093/oxfordjournals.jhered.a109220
  32. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. https://doi.org/10.1093/genetics/89.3.583
  33. Nei M., T. Maruyama and R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1-10. https://doi.org/10.1111/j.1558-5646.1975.tb00807.x
  34. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  35. Oh, G. S., M. Y. Chung, S. G. Chung and M. G. Chung. 2001. Contrasting breeding systems: Liparis kumokiri and L. makinoana (Orchidaceae). Annales Botanici Fennici 38: 281-284.
  36. Olson, M. S., J. L. Hamrick and R. C. Moore. 2016. Breeding systems, mating systems, and gender determination in angiosperm trees. In Comparative and Evolutionary Genomics of Angiosperm Trees. Groover, A. and Q. Cronk (eds.), Springer, Cham. Pp. 139-158.
  37. Ottewell, K. M., D. C. Bickerton, M. Byrne and A. J. Lowe. 2016. Bridging the gap: a genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Diversity and Distributions 22: 174-188. https://doi.org/10.1111/ddi.12387
  38. Peakall, R. and P. E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics 28: 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  39. Pritchard, J. K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. https://doi.org/10.1093/genetics/155.2.945
  40. Pritchard, J. K., X. Wen and D. Falush. 2010. Documentation for structure software: version 2.3. Retrieved Jul. 6, 2019, available from http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.4/structure_doc.pdf.
  41. Ritland, K. and S. Jain. 1981. A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47: 35-52. https://doi.org/10.1038/hdy.1981.57
  42. Schnabel, A., J. D. Nason and J. L. Hamrick. 1998. Understanding the population genetic structure of Gleditsia triacanthos L.: seed dispersal and variation in female reproductive success. Molecular Ecology 7: 819-832. https://doi.org/10.1046/j.1365-294x.1998.00397.x
  43. Sezen, U. U., R. L. Chazdon and K. E. Holsinger. 2009. Proximity is not a proxy for parentage in an animal-dispersed neotropical canopy palm. Proceedings of the Royal Society of London. Series B: Biological Sciences 276: 2037-2044. https://doi.org/10.1098/rspb.2008.1793
  44. Suetsugu, K. 2019. Rain-triggered self-pollination in Liparis kumokiri, an orchid that blooms during the rainy season. Ecology 100: e02683.
  45. Takashima, M.., J. Hasegawa and T. Yukawa. 2016. Oreorchis coreana (Orchidaceae), a new addition to the flora of Japan. Acta Phytotaxonomica et Geobotanica 67: 61-66.
  46. Trapnell, D. W. and J. L. Hamrick. 2004. Partitioning nuclear and chloroplast variation at multiple spatial scales in the neotropical epiphytic orchid, Laelia rubescens. Molecular Ecology 13: 2655-2666. https://doi.org/10.1111/j.1365-294X.2004.02281.x
  47. Troupin, D., R. Nathan and G. G. Vendramin. 2006. Analysis of spatial genetic structure in an expanding Pinus halepensis population reveals development of fine-scale genetic clustering over time. Molecular Ecology 15: 3617-3630. https://doi.org/10.1111/j.1365-294X.2006.03047.x
  48. Vekemans, X. and O. J. Hardy. 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13: 921-935. https://doi.org/10.1046/j.1365-294X.2004.02076.x
  49. Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370. https://doi.org/10.2307/2408641
  50. Whitehead, M. R., R. Lanfear, R. J. Mitchell and J. D. Karron. 2018. Plant mating systems often vary widely among populations. Frontiers in Ecology and Evolution 6: 38. https://doi.org/10.3389/fevo.2018.00038
  51. Wright, S. 1965. The interpretation of population structure by Fstatistics with special regard to systems of mating. Evolution 19: 395-420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x
  52. Yeh, F. C., R. C. Yang and T. B. J. Boyle. 1999. POPGENE version 1.31: Microsoft Windows-based freeware for population genetic analysis. Quick Users' Guide. University of Alberta, Edmonton.
  53. Yukawa, T., D. Kawaguchi, A. Mukai and Y. Komaki. 2012. Discovery of Geodorum densiflorum (Orchidaceae) on the Ogasawara (Bonin) Islands: a case of ongoing colonization subsequent to long-distance dispersal. Bulletin of the National Museum of Nature and Science. Series B, Botany 38: 131-137.