
324

Korean J. Pl. Taxon. 49(4): 324−333 (2019)

https://doi.org/10.11110/kjpt.2019.49.4.324

RESEARCH ARTICLE

pISSN 1225-8318

eISSN 2466-1546

Korean Journal of

Plant Taxonomy

The genetically healthy terrestrial orchid Liparis krameri 

on southern Korean Peninsula

Mi Yoon CHUNG, Jae Min CHUNG1, Sungwon SON1, Kangshan MAO2, 

Jordi LÓPEZ-PUJOL3 and Myong Gi CHUNG4*

Division of Life Science and the Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju 52828, Korea
1Division of Plant Resources, Korea National Arboretum, Yangpyeong 12519, Korea

2Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, State Key Laboratory of 

Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
3Botanic Institute of Barcelona (IBB, CSIC-ICUB), Barcelona 08038, Catalonia, Spain

4Department of Biology and RINS, Gyeongsang National University, Jinju 52828, Korea

(Received 20 November 2019; Revised 24 December 2019; Accepted 27 December 2019)

ABSTRACT: Neutral genetic diversity found in plant species usually leaves an indelible footprint of historical

events. Korea’s main mountain range (referred to as the Baekdudaegan [BDDG]), is known to have served as a

glacial refugium primarily for the boreal and temperate flora of northeastern Asia. In addition, life-history traits

(life forms, geographic range, and breeding systems) influence the within- and among-population genetic diver-

sity of seed plant species. For example, selfing species harbor significantly less within-population genetic vari-

ation than that of predominantly outcrossers. A previous study of two Liparis species (L. makinoana and L.

kumokiri) emphasizes the role of the abovementioned factors shaping the levels of genetic diversity. Liparis

makinoana, mainly occurring on the BDDG and self-incompatible, harbors high levels of within-population

genetic diversity (expected heterozygosity, H
eP
 = 0.319), whereas there is no allozyme variation (H

eP
 = 0.000) in

L. kumokiri, which is self-compatible and mainly occurs in lowland hilly areas. To determine if this trend is also

found in other congeners, we sampled five populations of L. krameri from the southern part of the Korean Pen-

insula and investigated the allozyme-based genetic diversity at 15 putative loci. The somewhat intermediate lev-

els of within-population genetic variation (H
eP
 = 0.145) found in L. krameri are most likely due to its occurrence

in mountainous areas that, despite being outside of the main ridge of the BDDG, still served as refugia, and a

self-incompatible breeding system. Management strategies are suggested for L. krameri and L. makinoana based

on the levels and distribution of genetic diversity and inbreeding. 

Keywords: allozymes, Baekdudaegan, Bayesian clustering approach, glacial refugium, Liparis, PCoA

Neutral genetic markers (amplified fragment length

polymorphisms, allozymes, inter simple sequence repeats,

microsatellites, etc.) have been successfully adopted to study

levels of genetic diversity (Hamrick and Godt, 1989; Nybom,

2004), genetic structure (Hamrick et al., 1989; Schnabel et al.,

1998) including fine-scale spatial genetic structure (Vekemans

and Hardy, 2004; Chung et al., 2007; Gonzales et al., 2010),

mating systems (Ritland and Jain, 1981; Whitehead et al.,

2018), seed dispersal patterns and gene flow (Grivet et al.,

2005; Burczyk et al., 2006; Troupin et al., 2006; Jordano et

al., 2007), and parentage analyses (Hardesty et al., 2006; Sezen

et al., 2009), among others. Single gene (or genetic) markers

(nuclear, chloroplast DNA, and less frequently mitochondrial

DNA) are particularly useful in documenting levels of between-

population historical seed flow and reconstructing the

biogeographical history of plant species (i.e., phylogeography).

Therefore, historical events (e.g., glaciations) could leave a

‘non-negligible’ trace on the levels of neutral genetic diversity
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found within species.

Some life-history and ecological traits of seed plants are

directly or indirectly related to dispersal of genes (i.e., pollen

and seed flow), inbreeding, and effective population sizes (Ne)

(i.e., mating systems, etc.) which, in turn, have causal

relationships with the levels and the distribution of genetic

diversity (Loveless and Hamrick, 1984; Hamrick and Godt,

1989, 1996). Plant-allozyme literature (Hamrick and Godt, 1989;

Olson et al., 2016) demonstrate that outcrossing species or those

with a mixed mating system harbor more genetic diversity than

selfing species, which is generally true both when heterospecific

(mixed species) and when congeneric comparisons are carried

out. Furthermore, outcrossing or mixed mating species usually

show a lower degree of between-population genetic differentiation

than selfing species.

On the Korean Peninsula the Baekdudaegan (BDDG) (Fig.

1) is regarded as a sort of ‘backbone’ because it stretches across

the peninsula with over 1,600 km. The BDDG is a biodiversity

hotspot primarily due to its role as a Pleistocene refugium

(Borzée et al., 2017; Chung et al., 2017, 2018a). We found a

pattern of high within-population (expected heterozygosity,

mean HeP = 0.159) and low to moderate between-population

allozyme-based genetic differentiation (mean GST = 0.175) in

16 plant species centered in the BDDG (Chung et al., 2017).

Such a pattern of genetic “health” for plant populations

growing in these mountains would be ascribed to the likely

large Ne and great demographic stability during the Last Glacial

Maximum.

Considering these two factors (i.e., historical events and

current mating systems), one may expect that outcrossing plant

species that dwelled on the BDDG for a long period of time

would maintain higher within-population genetic variation and

lower between-population genetic divergence than

predominantly selfing species that occur in lowland hills. An

example that fits this model is the terrestrial orchid congeneric

pair Liparis makinoana Schltr. and L. kumokiri F. Maek. in

South Korea (Chung et al., 2007). Consistent to the expectation,

L. makinoana, mainly occurring on the BDDG and self-

incompatible, harbors high levels of within-population genetic

diversity (HeP = 0.319; FST = 0.107), whereas there is no

allozyme variation (HeP = 0.000) in L. kumokiri, largely

occurring in lowland hills and self-compatible (Chung et al.,

2007).

In order to determine if this trend is also found in other

congeners of Liparis, we selected the congener L. krameri

Franch. & Sav. from southern Korean Peninsula as a study

species. Liparis makinoana is relatively continuously

distributed along the BDDG, whereas most populations of the

self-incompatible L. krameri occur in mountainous locations

away from the BDDG and are relatively discontinuously

distributed. Given these traits, we expect a lower within-

population genetic variation and a higher between-population

genetic differentiation for L. krameri compared to L.

makinoana. In addition, we determined the genetic type to

which this species belongs, based on the observed values for

the three main genetic parameters (GST, HeP, and FIS) as

described in Ottewell et al. (2016). Finally, we suggested

appropriate management strategies for the three Liparis species.

Materials and Methods

Study species, population sampling, and allozyme

electrophoresis

The perennial terrestrial orchid Liparis krameri is distributed

Fig. 1. Locations of sampled populations of by the five populations

of Liparis krameri separated by in South Korea. LMR-1 to LMR-3

are located at Gajisan Mt. LMR-1 and LMR-2 is separated by ca.

750 m; LMR-2 and LMR-3 are separated by ca. 560 m. Population

LMR-3 is located near the peak at 1,240 m. LMR-4 (elev. 440 m)

and LMR-5 (elev. 690 m) were from Geojedo Island and Jejudo

Island, respectively. The thick line indicates the main ridgeline of

the Baekdudaegan (BDDG) mountain system, and the dotted line

represents the so-called “Nakdongjeongmaek,” one of the 13

mountainous branches of the BDDG.
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in mainland China (SW Hubei), the Korean Peninsula, Russian

Far East, and Japan (Chen et al., 2009). On the Korean

Peninsula, the species grows well on half-shaded slopes under

trees (e.g., pine-oak forests) rich in humus with a good

drainage. Pollinators of L. krameri are unknown, but the species

is visited by small diptera such as fungus gnat in Japan (K.

Suetsugu, pers. comm.). In LMR-4, ovaries from induced

autogamy were detached, but those pollinated from different

individuals set fruit, suggesting self-incompatibility. However,

in Japan L. krameri is either self-compatible (but non-

autogamous) or self-incompatible (thus, ‘partially self-

incompatible’); fruit and seed set of selfed individuals was

lower than that of crossed ones (K. Suetsugu, pers. comm.).

A similar scenario is found in L. makinoana: it was self-

incompatible based on individuals in a location near Mt. Sobaek,

South Korea (Oh et al., 2001). However, as L. makinoana in

Japan set fruits with viable seeds sometimes produced by

induced autogamy, Suetsugu considered it as ‘partially self-

incompatible’ (K. Suetsugu, pers. comm.). Whitehead et al.

(2018) showed that plant mating systems often vary among

conspecific populations based on meta-analyses of 741

populations from 105 species and cautions that estimates of

outcrossing rates from single populations are often unreliable

indicators of the entire species. 

To investigate allozyme variation within- and between-

populations of L. krameri, we collected leaf samples (from a

total of 177 individuals) from five populations from southern

Korean Peninsula (Fig. 1, Table 1). We cut 1 cm from the leaf

tip to minimize the damage to plants; we transported leaf

samples on an ice box and kept them in a refrigerator once at

the corresponding author’s laboratory. We cut and crushed them

with a precooled mortar and pestle in a phosphate

polyvinylpyrrolidone extraction buffer (Mitton et al., 1979). We

absorbed enzyme extracts onto 4 × 6-mm wicks cut from

Whatman 3 MM chromatography paper (Whatman International,

Maidstone, UK), which were then stored at -70oC until needed.

To compare L. krameri with the previously studied (in the

same laboratory) L. kumokiri and L. makinoana (Chung et

al., 2005, 2007), we followed the same method as described

by Chung et al. (2007). We stained starch gels (12%) for

15 putative loci resolved from nine enzyme systems using

three buffer systems: Dia-1, Dia-2, Fdh, Idh-1, Idh-2, Lap-

1, Lap-2, Mdh-1, Mdh-2, 6Pgd-1, 6Pgd-2, Pgi-1, Pgi-2,

Pgm, and Skdh. We designated putative loci sequentially,

with the most anodally migrating isozyme designated as

‘1,’ the next ‘2,’ and so on. We also designated different

alleles within each locus sequentially by alphabetical order

(‘a’, ‘b’, ‘c’, ‘d’, and ‘e’).

Data analysis

We designated a locus as ‘polymorphic’ when two or

more alleles were detected, regardless of their frequencies.

We estimated the genetic diversity parameters within

populations using the programs POPGENE (Yeh et al.,

1999) and FSTAT (Goudet, 1995): percentage of

polymorphic loci (%PP), mean number of alleles per locus

(AP), allelic richness (AR) using a rarefaction method to

account for uneven population sample sizes (Hurlbert, 1971;

El Mousadik and Petit, 1996), observed heterozygosity (HoP)

and Hardy–Weinberg (H–W) expected heterozygosity or

Nei’s (1978) gene diversity (HeP). Except for AR and Ho,

we also estimated these parameters for the total samples as

a whole (i.e., at the species level). Hereafter, the subscript

“P” indicates population means, while the subscript “S”

indicates species’ (or pooled samples) means.

To test for differences between populations of L. makinoana

and those of L. krameri for observed statistics, OSx (ARP, HoP,

and HeP), we used a permutation scheme (999 replicates) by

randomly allocating whole samples to the different groups,

keeping the number of samples in each group constant and

calculating differences between populations of the two species

for randomized statistics, RSx. We then obtained the p-value

of the test as the proportion of randomized data sets giving

higher values for RSx than for OSx. These calculations were

performed using FSTAT (Goudet, 1995).

To test for recent decreases of NeP (i.e., genetic bottlenecks)

in L. krameri, we evaluated differences across loci between

the H–W He and the equilibrium heterozygosity (Heq) expected

assuming mutation–drift equilibrium. Using the program

BOTTLENECK (Cornuet and Luikart, 1996), we evaluated

these differences using a sign test and a Wilcoxon sign-rank

test under an infinite allele model. Since allelic diversity is

generally lost more rapidly than HeP (Nei et al., 1975), recently

bottlenecked populations will exhibit an excess of H–W HeP

relative to Heq (Cornuet and Luikart, 1996; Luikart et al., 1998).

We used the program SPAGeDi (Hardy and Vekemans,

2002) to calculate population-level FIS (inbreeding) and its

significance level by 999 permutations under the null

hypothesis of FIS = 0. To measure deviations from H–W

equilibrium at each polymorphic locus, we calculated averages

of Wright’s (1965) FIS and FST (deviations from H–W

equilibrium of individuals relative to their local populations,

and local populations relative to the total population,

respectively) following Weir and Cockerham (1984). Using

FSTAT, we constructed 95% bootstrap confidence intervals

(CI) (999 replicates) around means of FIS and FST, and

considered the observed FIS and FST to be significant when
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Table 1. Summary of within-population genetic diversity measures, mean fixation (F
IS

) and genetic divergence (G
ST 

or F
ST

) estimates found

in Liparis krameri, in two congeners (L. kumokiri and L. makinoana) in South Korea, and groups of species having similar-life history traits

and species from areas recognized as harboring a glacial refugium (the BDDG). 

Species and category n NP %P A AR H
e 
(SE) H

o 
(SE) F

IS
G

ST
 (or F

ST
) Reference

Liparis krameri 0.149 Present study

LMR-1 50 40.0 1.60 1.53 0.130 (0.059) 0.117 (0.057) 0.099

LMR-2 14 40.0 1.47 1.47 0.146 (0.061) 0.143 (0.065) 0.024

LMR-3 51 40.0 1.67 1.57 0.147 (0.059) 0.140 (0.057) 0.045

LMR-4 40 46.7 1.67 1.63 0.162 (0.060) 0.132 (0.049) 0.186a

LMR-5 22 40.0 1.53 1.53 0.141 (0.059) 0.149 (0.060) –0.051

Average 35 41.0 1.59 1.55 0.145 (0.005) 0.136 (0.006) 0.059b

Pooled samples 177 5 46.7 1.93 0.166 (0.062) 0.133 (0.049)

Liparis kumokiri 1875 17 0.0 1.00 1.00 0.000 (0.000) 0.000 (0.000) Chung et al. (2007)

Liparis makinoana 0.107

Average 126 70.0 2.07 2.05 0.319 (0.007) 0.256 (0.011) 0.199c

Pooled samples 502 4 73.3 2.27 0.346 (0.070) 0.262 (0.060)

Means for orchids 0.190

 (N = 68)

Chung et al. (2018b)

Population level

(N = 68)

33.2 1.55 0.134

 Species level

(N = 68)

41.0 1.71 0.135

Plants occurring mainly 

in the Baekdudaegan 

(BDDG) on the Korean 

Peninsula

0.175

 (N = 16)

Chung et al. (2017)

Population level

(N = 16)

46.0 1.72 0.159

 Species level

(N = 16)

64.3 2.20 0.193

Plant with outcrossing-

animal breeding system

0.197

 (N =124)

Hamrick and Godt 

(1989)

Population level

(N = 164)

35.9 1.54 0.124

Species level

(N = 172)

51.1 1.99 0.167

Herbaceous perennials 0.256

(N = 228)

Hamrick (2004), 

Chung et al. 

(unpubl. data)

Population level

(N = 228)

27.5 1.38 0.096

Species level

(N = 215)

42.8 1.75 0.125

n, the number of individuals; NP, number of populations; %P, percentage of polymorphic loci; A, mean number of alleles per locus; AR, mean

allelic richness; H
o
, observed heterozygosity; H

e
, H–W expected heterozygosity or genetic diversity; SE, standard error in parentheses; N,

number of studies (entries). Note that in the text a “P” subscript denotes population-level values (e.g., %P
P
, H

eP
), whereas an “S” subscript

denotes species-level values (e.g., %P
S
, H

eS
).

aSignificant (at p = 0.000) deviation from the null hypothesis of F
IS

 = 0 based on permutation (999 replicates). bWeir and Cockerham (1984)

estimate of F
IS

 over populations. cSignificant (at p = 0.001) Weir and Cockerham (1984) estimate of F
IS

 over populations.
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95% CI did not overlap zero. Statistical significance of

differences in FIS and FST between populations of L. makinoana

and L. krameri was determined as outlined above for AR, HoP,

and HeP.

To estimate the levels of genetic divergence among

populations, we performed a principal coordinate analysis

(PCoA) with GenAlEx (Peakall and Smouse, 2012) based on

codominant genotypic distances. In addition, we assessed the

genetic structure by means of the Bayesian algorithm

implemented in STRUCTURE 2.3.4 (Pritchard et al., 2000).

The program estimates the likelihood of the individuals being

structured in a given number of genetic clusters (or genetic

populations, K). We selected ‘admixture’ and ‘correlated’ as

appropriate models for ancestry and allele frequencies,

respectively, as events of migration and populations with shared

ancestry are presumably to occur in L. krameri. We set the

burn-in period and Markov Chain Monte Carlo to 50,000 and

500,000 iterations, respectively, and 20 replicates per K were

run. We determined the most likely value of K by the ΔK

statistics of Evanno et al. (2005). As the ΔK method tends to

identify K = 2 as the top level of hierarchical structure (Janes

et al., 2017), we combined it with the method of choosing the

smallest K after the log probability of data [ln Pr(X|K)] values

reached a plateau (Pritchard et al., 2010). The results of both

methods were visualized with the aid of Structure Harvester

(Earl and vonHoldt, 2012).

Results

Levels of genetic variation within populations and

samples as a whole

Seven (Dia-1, Dia-2, Pgm, Idh-1, Pgi-2, 6Pgd-1, and 6Pgd-

2) out of 15 loci were polymorphic across five populations

of L. krameri in southern Korean Peninsula. Variation at

allozyme loci within populations was moderate or high (Table

1). At the population level, the average percentage of

polymorphic loci (%PP) was 41.1%, the mean number of

alleles per locus (AP) was 1.59, the AR was 1.55, and the

mean observed (HoP) and expected heterozygosity (HeP) were

0.136 and 0.145, respectively (Table 1). Higher levels of %PS

(46.7%), AS (1.93), and HeS (0.166) were found when samples

were treated as a whole (Table 1). Liparis makinoana

harbored higher within-population genetic variation than L.

krameri (one-sided p-values for ARP, HoP, and HeP were 0.004,

0.010, and 0.010, respectively).

Among the five studied populations of L. krameri, we did

not find any population with significant excess of H–W He

under the infinite allele model (Table 2).

Population genetic structure

We found no significant deficiency of heterozygotes (at the

0.05 level) relative to H–W expectations in all but one

population (LMR-4; FIS = 0.186) (Table 2). These results, as

well as the non-significant multi-population-level FIS (FIS =

0.059; 95% CI, –0.047 to 0.146) (Table 2), indicated a general

fit to H–W expectations within populations. The value of

pooled multi-population FIS for L. makinoana (FIS = 0.199)

was significantly larger than that of L. krameri (p = 0.025).

Deviation from H–W expectations due to allele frequency

differences between populations was significantly different

from zero for the two species (FST = 0.149; 95% CI, 0.095 to

0.216 for L. krameri vs. FST = 0.107; 95% CI, 0.067 to 0.148

for L. makinoana). We found no statistically significant

differences between the two species (p = 0.587).

In the PCoA (Fig. 2), the first two components accounted

for 78.1% (axis 1 = 45.0%; axis 2 = 33.1%) of the total genetic

variance. Population LMR-3, which occurs in Gajisan Mt. and

is located very close to LMR-1 and LMR-2, clustered, instead,

with LMR-4 (Fig. 2). The best clustering scheme of

STRUCTURE (K = 2 or K = 3, according to both the ln

Pr(X |K ) and the ΔK statistic), agreed with the PCoA (Fig. 3).

Table 2. Statistical tests for evidence of recent bottlenecked

populations of Liparis krameri. Estimates are p-values of sign and

Wilcoxon sign-rank tests.

Populations Sign test Wilcoxon sign-rank test

LMR-1 0.260 0.078 

LMR-2 0.174 0.078 

LMR-3 0.278 0.078 

LMR-4 0.314 0.078 

LMR-5 0.164 0.078 

Fig. 2. The principal coordinate analysis (PCoA) of the 5 studied

populations of Liparis krameri in South Korea. Blue circles,

populations on Gajisan Mt. (LMR-1 to LMR-3); green circle,

population on Geoje Island (LMR-4); yellow circle, population on

Jeju Island (LMR-5).
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Discussion

Levels and distribution of genetic diversity of L.

krameri

We anticipated a lower within-population genetic variation

and a higher between-population genetic differentiation for L.

krameri compared to L. makinoana. Our results support the

expectation for within-population genetic variation, but not that

for between-population genetic differentiation; although, as

predicted, FST for L. makinoana was lower than that for L.

krameri (0.107 vs. 0.149), these two values were not

statistically significantly different.

The levels of genetic variation within populations of L.

krameri and within the species (i.e., the samples pooled as a

whole) are slightly lower than those compiled for plant species

occurring mainly in the BDDG (HeP = 0.145 vs. 0.159 and HeS

= 0.166 vs. 0.193) (Table 1). However, L. krameri maintains

higher levels of genetic variation at population and species levels

than those typically found in orchids (HeP = 0.134 and HeS =

0.135) (Table 1), in plant species with outcrossing-animal

breeding system (HeP = 0.124 and HeS = 0.167) (Table 1), and

in herbaceous perennials (HeP = 0.096 and HeS = 0.125) (Table 1).

Except LMR-4, HoP is close to HeP (multi-population-level

FIS = 0.059), which in part is consistent with the life-history

traits observed for the species in Korea (self-incompatibility

and pollination by unidentified insects). However, a significant

deficiency of heterozygotes relative to H–W expectations

(multi-population-level FIS = 0.199) was found in L.

makinoana.

Liparis krameri exhibits a relatively low degree of genetic

differentiation among populations (FST = 0.149). This degree

is lower than those compiled for plant species occurring mainly

in the BDDG (GST = 0.175) (Table 1), orchid species (GST =

0.190) (Table 1), plant species with outcrossing-animal

breeding system (GST = 0.197) (Table 1), and perennial herbs

(GST = 0.256) (Table 1). Why do populations of L. krameri

harbor moderate to high levels of within-population genetic

variation and relatively low degree of between-population

genetic divergence? Although most populations of L. krameri

occur in mountainous locations away from the BDDG (which

has been suggested to be one of the main East Asia refugia

for plants) (Chung et al., 2017), the species would have endured

the glacial periods in favorable areas for the survival of the

species. In addition to the BDDG, some of its ‘branches’ or

Fig. 3. Results of STRUCTURE analysis for all studied individuals of the five populations of Liparis krameri in South Korea. A, B. The most

likely K was estimated by the ΔK statistics (Evanno et al., 2005), and by choosing the smallest K after the log probability of data [ln Pr(X|K)]

values reached a plateau (Pritchard et al., 2010), using Structure Harvester (Earl and vonHoldt, 2012). C. Bayesian clustering analysis when K

= 2 and K = 3.
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associated mountain systems, such as ‘Nakdongjeongmaek’

(where Gajisan Mt. is located, home of populations LMR-1 to

LMR-3) (Fig. 1), as well as Jeju Island (where LMR-5 is

located) (Fig. 1), would have also acted as suitable refugia for

many temperate and boreal plants; populations within refugia

would have maintained relatively large Ne and connectivity

among them (Dolezal et al., 2012; Chung et al., 2013, 2017).

Orchids produce tiny seeds that have the potential for long

distance dispersal by wind or storms (Arditti and Ghani, 2000;

Trapnell and Hamrick, 2004; Yukawa et al., 2012; Takashima

et al., 2016). As L. krameri occurs in southern Japan, one may

consider that current Korean populations might have originated

by postglacial expansion from outside of the peninsula. This

scenario is, however, less likely than in situ survival in glacial

refugia because L. krameri harbors high levels of HeP. Analysis

of ecological niche modeling would provide us insights into

Pleistocene demographic history of L. krameri on the Korean

Peninsula. However, given the limited number of presence

records in South Korea and little information on the distribution

of L. krameri in North Korea, it is unlikely that niche modeling

will generate accurate and useful predictions.

Liparis krameri is genetically healthy

According to population genetics theory, the “genetic health”

of populations is characterized by large Ne, sufficient gene flow

to counteract the effects of random genetic drift, and a low

degree of inbreeding (Ottewell et al., 2016). These factors are

closely related to the three major population genetic parameters

GST, HeP, and FIS: in healthy populations or species, one would

expect low degrees of GST and low levels of FIS but high levels

of HeP. Ottewell et al. (2016) developed a plain language genetic

assessment approach by setting eight possible combinations

based on the rating of the three parameters as ‘low’ (L) or

‘high’ (H). 

The FST value found in L. krameri (0.149) can be considered

as ‘low’ because it is lower than the threshold value (FST =

0.150) proposed by Ottewell et al. (2016), but also because it

is lower than the average values reported for plant species

occurring mainly in the BDDG, orchid species, plant species

with outcrossing-animal breeding system, and perennial herbs

(Table 1). The value of HeP (0.145) can be considered as ‘high’

because, despite being lower than the value found in L.

makinoana (HeP = 0.319) (Table 1), it is higher than the average

values reported for orchids, plant species with outcrossing-

animal breeding system, and herbaceous perennials (Table 1).

Finally, we rate the third parameter FIS (0.059) as ‘low’ because

it does not deviate from the null hypothesis of FIS = 0 and it

is lower than its congener L. makinoana (FIS = 0.199) (Table

1) and than what is expected for herbaceous perennials (FIS =

0.174) (Duminil et al., 2009). Thus, in terms of all (pooled)

populations examined, L. krameri in southern Korean

Peninsula can be represented as L/H/L (which can be regarded

as a “healthy” species). According to table 1 in Ottewell et al.

(2016), L/H/L belongs to the first genetic management strategy

which is characterized by the following species’ ecological and

demographical scenarios: (1) historically connected

populations maintaining gene flow contemporarily; (2) reduced

effects of outbreeding depression and local adaptation because

of somewhat homogeneous habitats (the species grows well

on half-shaded slopes under trees forests rich in humus with

a good drainage); (3) populations acting as “source/sink”

metapopulations; and (4) avoidance of loss of genetic diversity

and inbreeding due to large Ne. On the basis of these scenarios,

Ottewell et al. (2016) recommend focusing on maintaining and

facilitating metapopulation dynamics, although translocations

between populations to boost population sizes is also a viable

option.

In terms of individual populations, the only way to know

whether a population is low (L) or high (H) regarding FST is

by getting a matrix of pairwise FST values and check whether

a given population has low or high levels of FST with the rest

of populations. There were no significant differences among

the five means (from 0.107 in LMR-2 to 0.154 in LMR-5) for

FST pairwise values of each population with the rest of the

populations (Kruskal-Wallis test, H = 5.287, p = 0.259). Thus,

we considered that the allele frequencies are rather

homogenous among the five populations and rated each FST

mean as ‘L’ because Wright’s FST (0.149) estimated from five

populations was considered as ‘L’. Except LMR-4, all

populations of L. krameri could be expressed as L/H/L, and,

thus, could be considered as “healthy” ones. The population

LMR-4 could be represented as L/H/H because FIS (0.186) is

similar to that of L. makinoana (FIS = 0.199) and slightly higher

than the mean reported for herbaceous perennials (FIS = 0.174)

(Duminil et al., 2009). According to the ecological/demographical

scenarios proposed by Ottewell et al. (2016), recent

fragmentation or reduction in population size would have

occurred in LMR-4, causing inbreeding. As management

strategies, approaches to reduce inbreeding (e.g., facilitation of

pollen/seed immigration and active translocations) should be

initiated (Ottewell et al., 2016).

Finally, as L. makinoana could be represented as L/H/H, for

the long-term survival of this species management strategies

should be conducted as suggested above for LMR-4. As L.

kumokiri is a genetically depauperate species at neutral loci

and mainly occurs under forests showing a narrow ecological
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amplitude, it might lack adaptability to environmental changes

and, thus, is prone to extinction. The species blooms during

the rainy season and is rain-triggered self-pollinated (Suetsugu,

2019). From a conservation and restoration perspective, L.

kumokiri is of higher priority regarding conservation and

restoration actions, which should be focused on increasing the

number of individuals and populations.
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