• Title/Summary/Keyword: all-ceramics

Search Result 502, Processing Time 0.027 seconds

Microwave Dielectric Properties of the 0.7Mg4Ta2O9-0.3SrTiO3 Ceramics with Sintering Temperature (소결온도에 따른 0.7Mg4Ta2O9-0.3SrTiO3 세라믹스의 마이크로파 유전특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Lee, Moon-Kee;Lee, Young-Hie;Bae, Seon-Gi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.538-542
    • /
    • 2005
  • The structural and microwave dielectric properties of $0.7Mg_4Ta_2O_9-0.3SrTiO_3$ ceramics with sintering temperature were investigated. All the sample of the $0.7Mg_4Ta_2O_9-0.3SrTiO_3$ ceramics were prepared by conventional miked oxide method and the sintering temperature was $1425\~1500^{\circ}C$. The hexagonal phase of $Mg_4Ta_2O_9$ and the cubic phase of $SrTiO_3$ were coexisted. The porosity of $0.7Mg_4Ta_2O_9-0.3SrTiO_3$ ceramics were reduced with increasing sintering temperature. In the case of $0.7Mg_4Ta_2O_9-0.3SrTiO_3$ ceramics sintered at $1475^{\circ}C$, dielectric constant, quality factor and temperature coefficient of resonant frequency were 14.51, 82,596 GHz and $-3.14\;ppm/^{\circ}C$, respectively.

PROPERTIES OF PIB-CU FILMS ACCELERATION VOLTAGE AND IONIZATION POTENTIAL

  • Kim, K.H.;Jang, H.G.;Han, S.;Choi, S.C.;Choi, D.J.;Jung, H.J.;Koh, S.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.570-576
    • /
    • 1996
  • Cu films for future ULSI metallization were prepared by partially ionized beam (PIB) deposition and characterized in terms of preferred orientation, grain size, roughness and resistivity. PIB-Cu films were prepared on Si (100) at pressure of $8 \times 10^{-7}$~$1 \times 10^{-6}$ Torr. Effects of acceleration voltage and ionization potential on the properties of PIB-Cu films have been investigated. As the acceleration voltage increased at constant ionization potential of 400 V, the degree of preferred orientation and surface smoothness of the Cu film increased. At the ionization potential of 450 V, the degree of preferred orientation at the acceleration voltage higher than 2 kV decreased and surface roughness increased with acceleration voltage. Grain size of Cu films increased to 1100 $\AA$ initially up to applied acceleration voltage of 1 kV, above which a little increase occurred with the acceleration voltage. There was no indication of impurities such as C, O in all sample. Resistivity of Cu film had the same trends as the surface roughness with acceleration voltage and ionization potential. The increase of electrical resistivity of PIB-Cu films was explained in terms of grain size and surface roughness

  • PDF

Structural and Microwave Dielectric Properties of the $Ba_{5}Nb_{4}O_{15}$ Ceramics with Sintering Temperature (소결온도에 따른 $Ba_{5}Nb_{4}O_{15}$ 세라믹스의 구조 및 마이크로파 유전특성)

  • Lee, Sung-Jun;Pack, In-Gil;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.238-239
    • /
    • 2007
  • In this study, the structural and microwave dielectric properties of the $Ba_{5}Nb_{4}O_{15}$ cation-deficient perovskite ceramics with sintering temperature were investigated. All sample of the $Ba_{5}Nb_{4}O_{15}$ ceramics were prepared by the conventional mixed oxide method and sintered at $1325^{\circ}C{\sim}1500^{\circ}C$. The bulk density, dielectric constant and quality factor of the $Ba_{5}Nb_{4}O_{15}$ ceramics were increased in the range of $1325^{\circ}C{\sim}1400^{\circ}C$ and decreased above the sintering temperature of 1400$^{\circ}C$. In the case of the $Ba_{5}Nb_{4}O_{15}$ ceramics sintered at 1400$^{\circ}C$ for 5h, the dielectric constant, quality factor and temperature coefficient of the resonant frequency (TCRF) were 39.55, 28,052GHz, 5.7ppm/$^{\circ}C$, respectively.

  • PDF

Structural and Microwave Dielectric Properties of the $Sr_5Nb_4O_{15}$ Ceramics with Sintering Temperature (소결온도에 따른 $Sr_5Nb_4O_{15}$ 세라믹스의 구조 및 마이크로파 유전특성)

  • Lee, Sung-Jun;Choi, Eui-Sun;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.268-269
    • /
    • 2007
  • In this study, the structural and microwave dielectric properties of the $Sr_5Nb_4O_{15}$ cation-deficient perovskite ceramics with sintering temperature were investigated. All sample of the $Sr_5Nb_4O_{15}$ ceramics were prepared by the conventional mixed oxide method and sintered at $1350^{\circ}C{\sim}1500^{\circ}C$. The bulk density, dielectric constant and quality factor of the $Sr_5Nb_4O_{15}$ ceramics were increased with increasing sintering temperature. In the case of the $Sr_5Nb_4O_{15}$ ceramics sintered at $1500^{\circ}C$ for 5h, the dielectric constant, quality factor and temperature coefficient of the resonant frequency (TCRF) were 22.35, 16,577GHz, +13.40ppm/$^{\circ}C$, respectively.

  • PDF

High Temperature Properties of $Si_3N_4-Re$Silicon Oxynitride (Re=Y, Yb, Er, La) Ceramics

  • Park, Heon-Jin;Lee, June-Gunn;Kim, Young-Wook;Cho, Kyeong-Sik
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.211-216
    • /
    • 1999
  • Four different $\beta-Si_3N_4$ ceramics with silicon oxynitrides $[Y_10(SiO_4)_6N_2, Yb_4Si_2N_2O_7, Er_2Si_3N_4O_3, \;and La_{10}(SiO_4)_6N_2$, respectivley] as secondary phases have been fabricated by hot-pressing the $Si_3N_4-Re_4Si_2N_2O_7$ (Re=Y, Yb, Er, and La) compositions at $1820^{\circ}C$ for 2h under a pressure of 25 MPa. The high temperature strength and oxidation behavior of the hot-pressed ceramics were characterized and compared with those of the ceramics fabricated from $Si_3N_4-Si_2O_7$ compositions. The $Si_3N_4-Re_4Si_2N_2O_7$composition investigated herein showed comparable high temperature strength to those from $Si_3N_4-Re_2Si_2O_7$ compositions. Si3N4 ceramics from a $Si_3N_4-Y_4Si_2N_2O_7$ composition showed the highest strength of 877 MPa at $1200^{\circ}C$ among the compositions. All $Si_3N_4$ ceramics investigated herein showed a parabolic weight gain with oxidation time at $1400^{\circ}C$ and the oxidation products of the ceramics were $SiO_2$ and $Re_2Si_2O_7$. The $Si_3N_4-Re_4Si_2N_2O_7$ compositions showed inferior oxidation resistance to those from $Si_3n_4-Re_2Si_2O_7$ compositions, owing to the incompatibility of the secondary crystalline phases of those ceramics with $SiO_2$, the oxidation product of Si3N4.Si3N4 ceramics from a $Si_3N_4-Er_4Si_2N_2O_7$ composition showed the best oxidation resistance of 0.375mg/$\textrm{cm}^2$ after oxidation at $1400^{\circ}C$ for 102 h in air among the compositions.

  • PDF

Structural and Microwave Dielectric Properties of the $Mg_5B_4O_{15}$ (B=Ta, Nb) Ceramics with Sintering Temperature (소결온도에 따른 $Mg_5B_4O_{15}$ (B=Ta, Nb)세라믹스의 구조 및 마이크로파 유전특성)

  • Lee, Sung-Jun;Kim, Jae-Sik;Lee, Sung-Gap;Lee, Young-Hie
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.556-560
    • /
    • 2007
  • In this study, both structural and microwave dielectric properties of the $Mg_5B_4O_{15}$ (B=Ta, Nb) cation-deficient perovskite ceramics with sintering temperature were investigated. All sample of the $Mg_5B_4O_{15}$ (B=Ta, Nb) ceramics were prepared by the conventional mixed oxide method and sintered at $1400^{\circ}C{\sim}1500^{\circ}C$. The bulk density and quality factor of the $Mg_5B_4O_{15}$ (B=Ta, Nb) ceramics were increased with increasing sinterning temperature in the range of $1400^{\circ}C{\sim}1450^{\circ}C$, but these were decreased the sintering temperature of above $1450^{\circ}C$. The dielectric constant of the $Mg_5Ta_4O_{15}$ ceramics was increased continuously with increasing sintering temperature. And the dielectric constant of the $Mg_5Nb_4O_{15}$ ceramics was increased in as the sintering temperature increasesfrom $1400^{\circ}C{\sim}1450^{\circ}C$ but was decreased at the temperatures above $1475^{\circ}C$. In the case of the $Mg_5Ta_4O_{15}\;and\;Mg_5Nb_4O_{15}$ ceramics sintered at $1450^{\circ}C$ for 5h, the dielectric constant, quality factor, and temperature coefficient of the resonant frequency (TCRF) were 8.2, 259,473 GHz, $-10.91ppm/^{\circ}C$ and 14, 37,350 GHz, $-52.3ppm/^{\circ}C$, respectively.

Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics

  • Kumar, Ajeet;Yoon, Jang Yuel;Thakre, Atul;Peddigari, Mahesh;Jeong, Dae-Yong;Kong, Young-Min;Ryu, Jungho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.412-420
    • /
    • 2019
  • In this study, the dielectric and polarization properties of manganese (Mn% = 0.0, 0.1, 0.2, 0.5) doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 (PLZT 7/82/18) anti-ferroelectric ceramics were studied for energy storage capacitor and pyroelectric applications. A systematic investigation demonstrated that the electric properties of PLZT 7/82/18 ceramics are affected significantly by the Mn-doping content. A maximum dielectric constant of ~ 2,128 at 1 kHz was found for 0.1% Mn-doped PLZT ceramics with a low dielectric loss of 0.018. The bipolar polarization versus electric field (P-E) hysteresis loops were traced for all compositions showing a typical anti-ferroelectric nature. The breakdown field was found to decrease with Mn-doping. The energy storage density and efficiency were found to be 460 J/㎤ and ~ 63%, respectively, for 0.2% Mn-doped PLZT ceramics. The pyroelectric coefficient of PLZT ceramics shows an increase based on the amount of Mn-doping.

Structural and Microwave Dielectric Properties of the $Ba_5B_4O_{15}$ (B=Ta, Nb) Ceramics with Sintering Temperature (소결온도에 따른 $Ba_5B_4O_{15}$ (B=Ta, Nb)세라믹스의 구조 및 마이크로파 유전특성)

  • Lee, Sung-Jun;Kim, Jae-Sik;Ryu, Ki-Won;Lee, Young-Hie
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1208-1212
    • /
    • 2008
  • In this study, both structural and microwave dielectric properties of the $Ba_5B_4O_{15}$ (B=Ta, Nb) cation-deficient perovskite ceramics with sintering temperature were investigated. All samples of the $Ba_5B_4O_{15}$ (B=Ta, Nb) ceramics were prepared by the conventional mixed oxide method and sintered at $1325^{\circ}C{\sim}1575^{\circ}C$. The bulk density and dielectric constant of the $Ba_5Ta_4O_{15}$ ceramics were increased continuously with increasing of sintering temperature. The quality factor of the $Ba_5Ta_4O_{15}$ ceramics was increased in as the sintering temperature increases from $1375^{\circ}C{\sim}1475^{\circ}C$ but decreased at the temperatures above $1475^{\circ}C$. And the bulk density, dielectric constant and quality factor of the $Ba_5Nb_4O_{15}$ ceramics were increased in as the sintering temperature increases from $1325^{\circ}CP{\sim}1400^{\circ}C$ but decreased at the temperatures above $1400^{\circ}C$. In the case of the $Ba_5Ta_4O_{15}$ sintered at $1475^{\circ}C$ and $Ba_5Nb_4O_{15}$ ceramics sintered at $1400^{\circ}C$, the dielectric constant, quality factor, and temperature coefficient of the resonant frequency (TCRF) were 25.15, 53,105 GHz, -3.06 $ppm/^{\circ}C$ and 39.55, 28,052 GHz, +5.7 ppm/$^{\circ}C$, respectively.

Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution (PNN 치환에 따른 PMW-PNN-PZT-BF 세라믹스의 미세구조와 압전 특성)

  • Sin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.90-94
    • /
    • 2016
  • In this work, [$Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3-BiFeO_3$] (x=0.02 to 0.12) composition ceramics were fabricated by the conventional soild state reaction method and their microstructure and piezoelectric properties were investigated according to PNN substitution. The addition of small amount of $BiFeO_3$, $Li_2CO_3$, and $CaCO_3$ were used in order to decrease the sintering temperature of the ceramics. The XRD (x-ray diffraction patterns) of all ceramics exhibited a perovskite structure. The sinterability of PMW-PNN-PZT-BF ceramics was remarkably improved using liquid phase sintering of $CaCO_3$, $Li_2CO_3$. However, it was identified from of the X-ray diffraction patterns that the secondary phase formed in grain boundaries decreased the piezoelectric properties. According to the substitution of PNN, the crystal structure of ceramics is transformed gradually from a tetragonal to rhombohedral phase. The x=0.10 mol PNN-substituted PMW-PNN-PZT-BF ceramics sintered at $920^{\circ}C$ showed the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33{\cdot}}g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=566$ [pC/N], $g_{33}=29.28[10^{-3}mV/N]$, $d_{33{\cdot}}g_{33}=16.57[pm^2/N]$, $k_p=0.61$, density=7.82 [$g/cm^3$], suitable for duplex ultrasonic sensor application.

Sliding Wear Behavior of UHMWPE against Novel Low Temperature Degradation-Free Zirconia/Alumina Composite

  • Lee, K.Y.;Lee, M.H.;Lee, Y.H.;Seo, W.S.;Kim, D.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.365-366
    • /
    • 2002
  • The sliding wear behavior of ultra high molecular weight polyethylene (UHMWPE) was examined on a novel low temperature degradation-free zirconia/alumina composite material and conventional alumina and zirconia ceramics used for femoral head in total hip joint replacement. The wear of UHMWPE pins against these ceramic disks was evaluated by performing linear reciprocal sliding and repeat pass rotational sliding tests for one million cycles in bovine serum. The weight loss of polyethylene against the novel low temperature degradation-free zirconia/alumina composite disks was much less than those against conventional ceramics for all tests. The mean weight loss of the polyethylene pins was more io the linear reciprocal sliding test than in the repeal pass rotational sliding lest for all kinds of disk materials. Neither the coherent transfer film nor the surface damage was observed on the surface of the novel zirconia/alumina composite disks during the test. The observed r,'stilts indicated that the wear of the polyethylene was closely related to contacting materials and kinematic motions. In conclusion, the novel zirconia/alumina composite leads the least wear of polyethylene among the tested ceramics and demonstrates the potential as lhe alternative materials for femoral head in total hip joint replacement.

  • PDF