Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.2.90

Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution  

Sin, Sang-Hoon (Department of Electrical Engineering, Semyung University)
Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.2, 2016 , pp. 90-94 More about this Journal
Abstract
In this work, [$Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3-BiFeO_3$] (x=0.02 to 0.12) composition ceramics were fabricated by the conventional soild state reaction method and their microstructure and piezoelectric properties were investigated according to PNN substitution. The addition of small amount of $BiFeO_3$, $Li_2CO_3$, and $CaCO_3$ were used in order to decrease the sintering temperature of the ceramics. The XRD (x-ray diffraction patterns) of all ceramics exhibited a perovskite structure. The sinterability of PMW-PNN-PZT-BF ceramics was remarkably improved using liquid phase sintering of $CaCO_3$, $Li_2CO_3$. However, it was identified from of the X-ray diffraction patterns that the secondary phase formed in grain boundaries decreased the piezoelectric properties. According to the substitution of PNN, the crystal structure of ceramics is transformed gradually from a tetragonal to rhombohedral phase. The x=0.10 mol PNN-substituted PMW-PNN-PZT-BF ceramics sintered at $920^{\circ}C$ showed the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33{\cdot}}g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=566$ [pC/N], $g_{33}=29.28[10^{-3}mV/N]$, $d_{33{\cdot}}g_{33}=16.57[pm^2/N]$, $k_p=0.61$, density=7.82 [$g/cm^3$], suitable for duplex ultrasonic sensor application.
Keywords
PMW-PNN-PZT; PNN substitution; Piezoelectric properties; Low temperature sintering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. H. Jeong, K. J. Yoo, and J. H. Yoo, J Electroceram., 23, 387 (2009). [DOI: http://dx.doi.org/10.1007/s10832-008-9473-7]   DOI
2 X. Chao, Z. Yang, M. Dong, and Y. Zhang, J. Magn. Magn. Mater., 323, 2012 (2011). [DOI: http://dx.doi.org/10.1016/j.jmmm.2011.02.048]   DOI
3 T. H. Shin, J. Y. Ha, H. C. Song, S. J. Yoon, H. H. Park, and J. W. Choi, Ceram. Int., 39, 1327 (2013). [DOI: http://dx.doi.org/10.1016/j.ceramint.2012.07.068]   DOI
4 J. Y. Ha, J. W. Choi, C. Y. Kang, D. J. Choi, H. J. Kim, and S. J. Yoon, Mater. Chem. Phys., 90, 396 (2005).[DOI: http://dx.doi.org/10.1016/j.matchemphys.2004.10.006]   DOI
5 K. H. Yoon, K. S. Kim, B. S. Choi, J. Korean Inst. Electr. Electron. Mater. Eng., 14, 20 (2001).
6 J. H. Yoo, K. J. Kim, Y. H. Jeong, and S. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 766 (2007). [DOI: http://dx.doi.org/10.4313/JKEM.2007.20.9.766]
7 M. W. Lee, S. J. Kim, M. S. Yoon, S. L. Ryu, and S. Y. Kweon, J. Korean Inst. Electr. Electron. Mater. Eng., 21, 1077 (2008). [DOI: http://dx.doi.org/10.4313/JKEM.2008.21.12.1077]
8 K. S. Lee, I. H. Lee, J. H. Yoo, and S. L. Ryu, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 1034-1038 (2007). [DOI: http://dx.doi.org/10.4313/JKEM.2007.20.12.1034]
9 T. Hu, J. Heli, A. Deleniv, S. Leppavuori, and S. Gevorgian, J. Am. Ceram. Soc., 87, 578 (2004). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2004.00578.x]   DOI
10 S. Licht, H. Wu, C. Hettige, B. Wang, J. Asercion, J. Lau, J. Stuart, Electronic Supplementary Information (ESI), 1 (2012).
11 G. M. Lee, J. Y. Lee, and J. H. Yoo, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 690 (2015). [DOI: http://dx.doi.org/10.4313/JKEM.2015.28.11.690]