J. Korean Inst. Electr. Electron. Mater. Eng.
Vol. 29, No. 2, pp. 90-94 February 2016
DOI: http://dx.doi.org/10.4313/JKEM.2016.29.2.90
ISSN 1226-7945 (Print), 2288-3258 (Online)

PNN 치환에 따른 PMW-PNN-PZT-BF 세라믹스의 미세구조와 압전 특성

신상훈, 류주현⁸

세명대학교 전기공학과

Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution

Sang-Hoon Sin and Ju-Hyun Yoo^a

Department of Electrical Engineering, Semyung University, Jecheon 27136, Korea

(Received January 8, 2016; Revised January 19, 2016; Accepted January 24, 2016)

Abstract: In this work, $[Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3$ -BiFeO₃] (x=0.02 to 0.12) composition ceramics were fabricated by the conventional soild state reaction method and their microstructure and piezoelectric properties were investigated according to PNN substitution. The addition of small amount of BiFeO₃, Li₂CO₃, and CaCO₃ were used in order to decrease the sintering temperature of the ceramics. The XRD (x-ray diffraction patterns) of all ceramics exhibited a perovskite structure. The sinterability of PMW-PNN-PZT-BF ceramics was remarkably improved using liquid phase sintering of CaCO₃, Li₂CO₃. However, it was identified from of the X-ray diffraction patterns that the secondary phase formed in grain boundaries decreased the piezoelectric properties. According to the substitution of PNN, the crystal structure of ceramics is transformed gradually from a tetragonal to rhombohedral phase. The x=0.10 mol PNN-substituted PMW-PNN-PZT-BF ceramics sintered at 920 °C showed the optimum values of piezoelectric constant(d₃₃), piezoelectric figure of merit(d₃₃·g₃₃), planar piezoelectric coupling coefficient(k_p) and density: d₃₃=566 [pC/N], g₃₃=29.28 [10⁻³mV/N], d₃₃·g₃₃=16.57 [pm²/N], k_p=0.61, density=7.82 [g/cm³], suitable for duplex ultrasonic sensor application.

Keywords: PMW-PNN-PZT, PNN substitution, Piezoelectric properties, Low temperature sintering

1. 서 론

최근 압전 세라믹스 기술의 급속한 개발 및 발전과 함께 압전체를 이용한 DC-DC converter, 압전변압기,

a. Corresponding author; juhyun57@semyung.ac.kr

Copyright ©2016 KIEEME. All rights reserved. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

압전액츄에이터와 같은 압전디바이스에 응용함으로써, 압전세라믹스의 연구가 활발히 이루어지고 있다 [1-4]. 360°C의 큐리온도(Tc)를 가지며 정방정계(tetragonalphase)와 삼방정계(rhombohedral phase) 의 상경계 영역 (morphotropic phase boundary)에서 압전특성이 우수하고 항전계가 높은 PZT계 세라믹스가 보고된 후 PZT계에 이성분으로 PMN, PNN, PMW 등을 첨가한 3성분계 세라믹스로 화학적 개량이 여러 나라에서 연구되었으며, 현재 3성분계 복합 페로브스카이트(perovskite) 구조로 연구가 되고 있다 [5]. 하지만, 복합 3성 분계

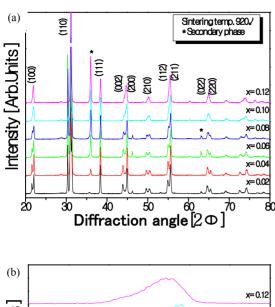
세라믹스는 완전한 고용체 제작에 어려움이 있으며, 제 3성분으로서 페로브스카이트 구조와 상의 혼정영역이 발생하여 온도 및 주파수 등에 대한 안정성이 떨어지 는 등 문제점이 대두되어왔다. 따라서 최근에는 시편 제작 시, 제작조건, 불순물 첨가 및 조성의 변화 등을 통하여 이러한 문제점을 해결, 개선하는데 관심이 집 중되고 있다. 특히 많은 연구자들이 전기 음성도차와 관용계수를 고려하여 ABO₃ 페로브스카이트 화합물 의 안정성에 대해 연구하였으며, 효과적인 첨가물로 는 PbMgWO₃가 보고되었다. 그러나 일반적인 PZT계 세라믹스의 소성온도가 1,200℃이상으로 높기 때문에 1,000℃이상의 높은 소결온도에서 PbO의 급격한 휘발 로 인하여 환경오염 문제와 인간건강에 유해하고 조성 의 변동을 가져와 재현성이 떨어지는 문제가 있으므로 이 문제점을 개선시키기 위한 가장 좋은 방법은 PbO 의 휘발을 억제하는 저온소결법이 많이 연구되고 있다 [6-8]. 저온 소결에서 사용되는 대표적인 소결조제로는 $CuO(1,064^{\circ}C)$, $Li_2CO_3(732^{\circ}C)$ [6,9], $CaCO_3$ (825°C) 등이 있다 [10]. 이러한 소결조제를 첨가하는 소결법은 소결온도를 낮추어 주는 장점을 가지고 있지만, 압전 및 유전특성이 저하되는 단점을 가지고 있기 때문에 우수한 특성은 유지를 시키면서, 저온소결이 가능한 소 결조제에 대한 연구가 필요하다.

초음파센서로 응용하기 위하여 압전세라믹스의 물성으로서 필요한 조건은 전압출력계수 g상수가 커야 수신용으로 적합하고, 압전 d상수가 크면 송신용으로 적합하다. 송수신용으로 동시 사용하려면 압전성능지수 $(d_{33}\cdot g_{33})$ 가 가장 큰 조성이 적합하다 [11].

따라서, 본 연구에서는 우수한 압전성능지수 $(d_{33} \cdot g_{33})$ 를 갖는 조성을 개발하기 위하여 $[Pb(Mg_{1/2}W_{1/2})_{0.03}$ $(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3-BiFeO_3]$ 의 조성에 x=PNN의 치환량의 변화를 주고, 저융점을 갖는 Li_2CO_3 , $CaCO_3$, 그리고 $BiFeO_3$ 소결조제를 첨가하여 액상소결에 의한 저온소결을 하고, 그에 따른 유전 및 압전특성을 조사하였다.

2. 실험 방법

본 실험에서는 다음과 같은 조성식을 이용하여 일반 적인 산화물 혼합법으로 시편을 제조하였다.


PbO(99%), MgO(99%), WO₃(99%) 등 99% 이상의 순도를 갖는 시료를 조성식에 따라 10⁻⁴ g까지 측량 하였다. 분산매로 아세톤을 사용하여 ZrO_2 ball로 24 시간 혼합 및 분쇄 하였다. 80℃의 항온건조기에서 건 조하였으며, 건조된 시료를 850℃의 온도에서 2시간 하소하였다. 하소한 시료와 소결조제인 Li₂CO₃, CaCO₃ 를 조성식에 맞춰 측량한 후 재혼합 및 분쇄를 하였 다. 혼합·분쇄된 시료를 항온건조기에서 건조시키고, 건조된 시료에 polyvinyl alcohol (PVA aqueous solution) 수용액을 5 [wt%] 첨가하여 17 Φ 몰드를 사용하여 15 MPa의 성형압을 가하여 성형하였다. 성 형된 시편은 600℃에서 3시간 동안 PVA 결합제를 태 워버리는 burnout 과정을 거친 후, 승·하강 온도구배 를 3℃/m로 하여 920℃에서 1시간 30분 소결하였다. 소성된 시편은 1 mm 두께로 연마한 후, Ag 전극을 스크린프린트법으로 도포하였으며, 시편을 600℃에서 10분 간 열처리 하였다. 120℃의 실리콘 오일에서 3 kV/mm의 직류 전계를 30분간 인가하여 분극하였다.

분극을 한 시편을 24시간이 지난 후에, impedence analyzer (Agilent 4294)를 이용하여 주파수 및 impedence 특성을 측정하였고, LCR meter(ANDO AG 4304)를 이용하여 1 kHz 의 주파수로 유전 특성을 측정하였다.

또한 압전상수(d_{33})는 Piezo- d_{33} meter(APC, YE 2730A)를 이용하여 측정하였다. 시편의 압전 및 유전특성은 IEEE에서 규정에 따라 공진 반공진 법을 이용하여 계산하였으며 시편의 미세구조 및 결정구조는 각각 SEM (scanning electron microscope) 과 XRD (X-ray diffraction)를 이용하여 관찰하였다.

3. 결과 및 고찰

그림 1(a)은 PNN 치환량의 변화에 따른 920°C에서 소성된 시편의 X선 회절패턴을 나타내고 있다. 그림에서 보이듯 X선 회절패턴의 분석 결과에서는 모든 시편은 전형적인 perovskite 상을 보이며, 2차상이 발견되었다. PNN 치환량을 증가시킬수록 2차상의 피크도 더욱더 커지는 것을 확인할 수 있다. 이는 완전한 고상반응이 이루어지지 않았으며, PNN 치환량의 과잉으로인하여 그레인 경계에 편석과 다른 소결조제와 반응을하였기 때문으로 사료된다. 그림 1(b)는 43°에서 46°까지 X선 회절패턴을 확대한 그림이다. 그림에서 알 수있듯이 PNN의 치환량이 x=0.02에서 0.08 까지는 모두정방정계(tetragonal phase)상을 확인할 수 있다.

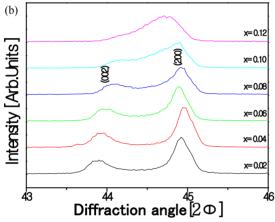
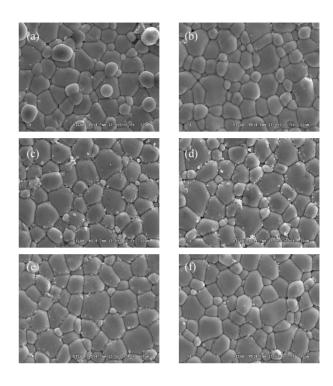



Fig. 1. X-ray diffraction patterns according to PNN substitution in the range 2θ . (a) 20° - 80° , (b) 43° - 46°

x=0.10에서는 상경계(MPB)로 생각되며, x=0.12에서는 (002), (200) 피크가 점차 하나의 피크로 합쳐지며 능면체(rhombohedral)상에 가까워지는 것으로 사료된다.

그림 2는 PNN 치환량의 변화에 따른 미세구조 (SEM) 이미지를 나타내고 있다. 시편의 입경은 PNN 치환량의 증가에 따라 증가하였으며, x=0.10 mol 치환시 5.74 μm의 최댓값을 보인 후 감소하였다. 입경이 증가한 이유는 PNN을 치환 시 결정립경계에서 기공이 상당히 감소한 것을 볼 수 있다. 또한, 소결조제로써 사용되는 Li₂CO₃ (732℃)와 CaCO₃ (825℃)는 저융점을 갖고 있다. 소결과정 중에 이들이 서로 반응하여 액상을 형성하여 기공이 줄어들면서, 치밀한 미세구조를 나타난 것으로 사료된다.

Fig. 2. The SEM micrographs according to PNN substitution. (a) x=0.02, (b) x=0.04, (c) x=0.06, (d) x=0.08, (e) x=0.10, and (f) x=0.12.

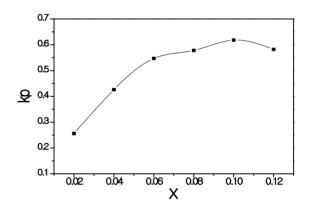


Fig. 3. Electromechanical coupling factor (k_{p}) according to PNN substitution.

그림 3은 PNN 치환량에 따른 시편의 전기기계결합 계수 (k_p) 를 나타낸 것이다. 전기기계결합계수는 PNN의 치환량의 증가와 함께 점점 증가하였으며, 치환량이 x=0.10 일 때, 0.618로 최댓값을 보였다. 그 후 x=0.12 치환된 시편에서는 감소하였다. 이는 PNN이 과 잉치환된 것으로 사료된다.

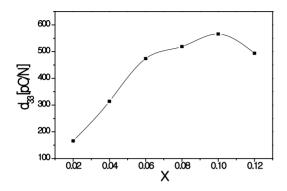
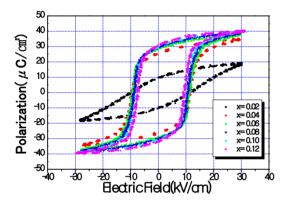



Fig. 4. Piezoelectric coefficient (d33) of specimens according to PNN substitution.

Fig. 5. P-E hysteresis loops of specimens according to PNN substitution.

그림 4는 PNN 치환량의 변화에 따른 압전상수(d₃₃)를 나타내고 있다. PNN 치환량의 증가에 따라 압전상수(d₃₃)는 전기기계결합계수의 결과와 같이 PNN 치환량의 증가에 따라 증가하였으며, PNN 치환량이 x=0.10 일 때, 566 pC/N의 최댓값을 나타내었다. 첨가한 BiFeO₃는 Pb²⁺ 이온자리에 Bi³⁺ 이온이 Zr⁴⁺와 Ti⁴⁺ 이온자리에는 Fe³⁺ 이온이 치환되어 들어가 산소공공을 유발시키는 억셉터로서의 작용을 하여 압전상수가 증가한 것으로 사료된다. 또한 x=0.10에서 상경계영역(MPB)인 것으로 사료됨으로써, 도메인 벽의 유동성이 용이하게 되어 분극효율이 높아졌기 때문에 증가한 것으로 사료된다.

그림 5는 PNN 치환량의 변화에 따른 1kHz에서 측정한 시편의 히스테리시스 루프(P-E hysteresis loop)를 나타낸 것이다. PNN 치환량을 증가할수록 잔류분 극은 $10.29~\mu C/cm^2$ 에서 $31.55~\mu C/cm^2$ 로 커지는 것을 확인할 수가 있으며, x=0.10에서 강유전 특성을 보인다. 유전상수, 압전상수와 함께 잔류분극도 증가한

Table 1. Physical properties of specimens according to PNN substitution.

X	Density [g/cm ³]		Dielectric Constant		g ₃₃ [10 ⁻³ mV/N	d ₃₃ ·g ₃₃][pm²/N]		Ec [kV/cm]
0.02	7.74	0.25	1,623	166	11.55	1.90	10.29	11.7
0.04	7.76	0.42	1,787	314	19.84	6.23	26.25	10.8
0.06	7.78	0.54	2,096	474	25.54	12.10	29.2	10.5
0.08	7.79	0.57	2,229	519	26.29	13.64	30.17	9.75
0.10	7.82	0.61	2,183	566	29.28	16.57	30.57	8.85
0.12	7.85	0.58	2,137	494	26.10	12.89	31.55	7.8

것으로 사료된다. 항전계의 감소는 그레인의 증가에 인하여 도메인 벽의 움직임이 용이해지기 때문이다. 또한, 항전계 감소는 XRD 패턴의 그림1 (b)에서 나타나 듯이, 상구조가 정방정(tetragonal phase)상에서 능면체(rhombohedral phase)으로 상이 이동하기 때문으로 사료된다.

표 1은 PNN 치환량의 변화에 따른 시편의 유전 및 압전특성을 나타낸 것이다. 920℃에서 소결하였으며, x=0.10일 때의 시편에서 d₃₃=566 [pC/N], g₃₃=29.28 (10⁻³mV/N), d₃₃·g₃₃=16.57 [pm²/N], k_p= 0.61, density =7.82 [g/cm³]으로 초음파센서 응용에 적합한 특성을 얻었다.

4. 결 론

본 연구에서는 초음파 센서용 조성으로 응용하기 위하여 우수한 압전성능지수(d₃₃.g₃₃)를 갖는 세라믹스 를 개발하기 위하여,

 $\begin{array}{l} 0.9925 [Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3] \\ +\ 0.0075\ BiFeO_3\ +\ 0.2\ wt\%Li_2CO_3\ +\ 0.25\ wt\%CaCO_3 \end{array}$

조성에 PNN을 치환하는 실험을 통하여 세라믹스의 미세구조와 압전 및 강유전 특성에 미치는 영향을 조 사한 결과는 다음과 같다.

1. XRD 패턴의 결과 PNN 치환량이 증가함에 따라 x=0.08 까지는 정방정상(tetragonal)을 확인하였으며, x=0.10에서는 상경계(MPB)로 생각되며, x=0.12 에서는 (002), (200) 피크가 점차 하나의 피크로 합쳐지며 능면체(rhombohedral)상에 가까워지는 것으로 사료된다.

- 능면체상으로 상이 변하면서, x=0.12 시편은 유전 및 압전특성이 감소한 것으로 사료된다.
- 2. PNN 치환량이 증가함에 따라 잔류분극은 10.29 $\mu\text{C/cm}^2$ 에서 31.55 $\mu\text{C/cm}^2$ 로 커지는 것을 확인할수가 있으며,항전계는 11.7 kV/Cm에서 7.8 kV/Cm으로 감소하는 경향을 나타내었다.
- 3. PNN의 치환량이 x=0.10일 때의 시편에서 density=7.82 [g/cm³], $k_p=0.61$, $\epsilon_r=2183$, $d_{33}=566$ [pC/N], $g_{33}=29.28$ [10^{-3} Vm/N], $d_{33}\cdot g_{33}=16.57$ [pm²/N]으로 초 음파센서 응용에 적합한 특성을 얻었다.

REFERENCES

- [1] Y. H. Jeong, K. J. Yoo, and J. H. Yoo, *J Electroceram.*, **23**, 387 (2009). [DOI: http://dx.doi.org/10.1007/s10832-008-9473-7]
- [2] X. Chao, Z. Yang, M. Dong, and Y. Zhang, J. Magn. Magn. Mater., 323, 2012 (2011).
 [DOI: http://dx.doi.org/10.1016/j.jmmm.2011.02.048]
- [3] T. H. Shin, J. Y. Ha, H. C. Song, S. J. Yoon, H. H. Park, and J. W. Choi, *Ceram. Int.*, 39, 1327 (2013).
 [DOI: http://dx.doi.org/10.1016/j.ceramint.2012.07.068]

- [4] J. Y. Ha, J. W. Choi, C. Y. Kang, D. J. Choi, H. J. Kim, and S. J. Yoon, *Mater. Chem. Phys.*, 90, 396 (2005).[DOI: http://dx.doi.org/10.1016/j.matchemphys.2004.10.006]
- [5] K. H. Yoon, K. S. Kim, B. S. Choi, *J. Korean Inst. Electr. Electron. Mater. Eng.*, **14**, 20 (2001).
- [6] J. H. Yoo, K. J. Kim, Y. H. Jeong, and S. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 766 (2007).
 [DOI: http://dx.doi.org/10.4313/JKEM.2007.20.9.766]
- [7] M. W. Lee, S. J. Kim, M. S. Yoon, S. L. Ryu, and S. Y. Kweon, *J. Korean Inst. Electr. Electron. Mater. Eng.*, 21, 1077 (2008).
 [DOI: http://dx.doi.org/10.4313/JKEM.2008.21.12.1077]
- [8] K. S. Lee, I. H. Lee, J. H. Yoo, and S. L. Ryu, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 1034-1038 (2007). [DOI: http://dx.doi.org/10.4313/JKEM.2007.20.12.1034]
- [9] T. Hu, J. Heli, A. Deleniv, S. Leppavuori, and S. Gevorgian, J. Am. Ceram. Soc., 87, 578 (2004).
 [DOI: http://dx.doi.org/10.1111/j.1551-2916.2004.00578.x]
- [10] S. Licht, H. Wu, C. Hettige, B. Wang, J. Asercion, J. Lau, J. Stuart, Electronic Supplementary Information (ESI), 1 (2012).
- [11] G. M. Lee, J. Y. Lee, and J. H. Yoo, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 690 (2015).
 [DOI: http://dx.doi.org/10.4313/JKEM.2015.28.11.690]