• Title/Summary/Keyword: aliasing

Search Result 220, Processing Time 0.027 seconds

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

Modeling and Validation of 3DOF Dynamics of Maglev Vehicle Considering Guideway (궤도 선형을 고려한 자기부상 열차의 3자유도 동역학 모델 수립 및 검증)

  • Park, Hyeon-cheol;Noh, Myounggyu;Kang, Heung-Sik;Han, Hyung-Suk;Kim, Chang-Hyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Magnetically levitated (Maglev) vehicles maintain a constant air gap between guideway and car bogie, and thereby achieves non-contact riding. Since the straightness and the flatness of the guideway directly affect the stability of levitation as well as the ride comfort, it is necessary to monitor the status of the guideway and to alert the train operators to any abnormal conditions. In order to develop a signal processing algorithm that extracts guideway irregularities from sensor data, virtual testing using a simulation model would be convenient for analyzing the exact effects of any input as long as the model describes the actual system accurately. Simulation model can also be used as an estimation model. In this paper, we develop a state-space dynamic model of a maglev vehicle system, running on the guideway that contains jumps. This model contains not only the dynamics of the vehicle, but also the descriptions of the power amplifier, the anti-aliasing filter and the sampling delay. A test rig is built for the validation of the model. The test rig consists of a small-scale maglev vehicle, tracks with artificial jumps, and various sensors measuring displacements, accelerations, and coil currents. The experimental data matches well with those from the simulation model, indicating the validity of the model.

A Reconfigurable Spatial Moving Average Filter in Sampler-Based Discrete-Time Receiver (샘플러 기반의 수신기를 위한 재구성 가능한 이산시간 공간상 이동평균 필터)

  • Cho, Yong-Ho;Shin, Soo-Hwan;Kweon, Soon-Jae;Yoo, Hyung-Joun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.169-177
    • /
    • 2012
  • A non-decimation second-order spatial moving average (SMA) discrete-time (DT) filter is proposed with reconfigurable null frequencies. The filter coefficients are changeable, and it can be controlled by switching sampling capacitors. So, interferers can be rejected effectively by flexible nulls. Since it operates without decimation, it does not change the sample rate and aliasing problem can be avoided. The filter is designed with variable weight of coefficients as $1:{\alpha}:1$ where ${\alpha}$ varies from 1 to 2. This corresponds to the change of null frequencies within the range of fs/3~fs/2 and fs/2~2fs/3. The proposed filter is implemented in the TSMC 0.18-${\mu}m$ CMOS process. Simulation shows that null frequencies are changeable in the range of 0.38~0.49fs and 0.51~0.62fs.

Sinusoidal Modeling of Polyphonic Audio Signals Using Dynamic Segmentation Method (동적 세그멘테이션을 이용한 폴리포닉 오디오 신호의 정현파 모델링)

  • 장호근;박주성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.58-68
    • /
    • 2000
  • This paper proposes a sinusoidal modeling of polyphonic audio signals. Sinusoidal modeling which has been applied well to speech and monophonic signals cannot be applied directly to polyphonic signals because a window size for sinusoidal analysis cannot be determined over the entire signal. In addition, for high quality synthesized signal transient parts like attacks should be preserved which determines timbre of musical instrument. In this paper, a multiresolution filter bank is designed which splits the input signal into six octave-spaced subbands without aliasing and sinusoidal modeling is applied to each subband signal. To alleviate smearing of transients in sinusoidal modeling a dynamic segmentation method is applied to subbands which determines the analysis-synthesis frame size adaptively to fit time-frequency characteristics of the subband signal. The improved dynamic segmentation is proposed which shows better performance about transients and reduced computation. For various polyphonic audio signals the result of simulation shows the suggested sinusoidal modeling can model polyphonic audio signals without loss of perceptual quality.

  • PDF

Multi-spectral Imaging-based Color Image Reconstruction Using the Conventional Bayer CFA (베이어 CFA 카메라를 사용한 다중 스펙트럼 기반 컬러영상 생성 기술)

  • Shin, Jeong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.561-565
    • /
    • 2011
  • This paper presents an imaging system for reconstruction of enhanced color images using the conventional Bayer CFA. By extracting various colors such as RGBCY from two sequential images which consist of a image by broadband G channel lens filter and the other image captured without one, the proposed color image reconstruction system can reduce the computational complexity for demosaicking and make high resolution color information without aliasing artifacts. Because the proposed system uses the common Bayer CFA image sensor, fabricating a new type of CFA is not necessary for obtaining a multi-spectral image, which can be easily extensible for applications of multi-spectral imaging. Finally, in order to verify the performance of the proposed system, experimental results are performed. By comparing with the existing demosaicking methods, the proposed camera system showed the significant improvements in the sense of color resolution.

COMPARISON OF SUB-SAMPLING ALGORITHM FOR LRIT IMAGE GENERATION

  • Bae, Hee-Jin;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.109-113
    • /
    • 2007
  • The COMS provides the LRIT/HRIT services to users. The COMS LRIT/HRIT broadcast service should satisfy the 15 minutes timeliness requirement. The requirement is important and critical enough to impact overall performance of the LHGS. HRIT image data is acquired from INRSM output receiving but LRIT image data is generated by sub-sampling HRIT image data in the LHGS. Specially, since LRIT is acquired from sub-sampled HRIT image data, LRIT processing spent more time. Besides, some of data loss for LRIT occurs since LRIT is compressed by lossy JPEG. Therefore, algorithm with the fastest processing speed and simplicity to be implemented should be selected to satisfy the requirement. Investigated sub-sampling algorithm for the LHGS were nearest neighbour algorithm, bilinear algorithm and bicubic algorithm. Nearest neighbour algorithm is selected for COMS LHGS considering the speed, simplicity and anti-aliasing corresponding to the guideline of user (KMA: Korea Meteorological Administration) to maintain the most cloud itself information in a view of meteorology. But the nearest neighbour algorithm is known as the worst performance. Therefore, it is studied in this paper that the selection of nearest neighbour algorithm for the LHGS is reasonable. First of all, characteristic of 3 sub-sampling algorithms is studied and compared. Then, several sub-sampling algorithm were applied to MTSAT-1R image data corresponding to COMS HRIT. Also, resized image was acquired from sub-sampled image with the identical sub-sampling algorithms applied to sub-sampling from HRIT to LRIT. And the difference between original image and resized image is compared. Besides, PSNR and MSE are calculated for each algorithm. This paper shows that it is appropriate to select nearest neighbour algorithm for COMS LHGS since sub-sampled image by nearest neighbour algorithm is little difference with that of other algorithms in quality performance from PSNR.

  • PDF

An Improved Design Method of FIR Quadrature Mirror-Image Filter Banks (개선된 FIR QMF 뱅크의 설계 방법)

  • 조병모;김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.213-221
    • /
    • 2004
  • A new method for design of two-channel finite-impulse response(FIR) quadrature mirror-image filter(QMF) banks with low reconstruction delay using weighting function is proposed. The weighting function used in this paper is calculated from the previous updated filter coefficients vector which is adjusted from iteration to iteration in the design of QMF banks. In this paper, passband and stopband edge frequency are used in design of QMF banks with low delay characteristic in time domain instead of specific frequency interval where the artifacts occur in conventional design method. The investigation of specific frequency interval where artifacts occur can not be required by using passband and stopband edge frequency. Some comparisons of performance are made with other existing design method to demonstrate the proposed method for QMF bank design. and it was observed that the proposed method using the weighted function and passband and stopband edge frequency improves the peak reconstruction error by 0.001 [dB], the peak-to-peak passband ripple by 0.003[dB], SNR with a white noise by 7[dB] and SNR with a step input by 32[dB], but with a reduction of the computational efficiency because of updating the weighting function over the conventional method in Ref [11].

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.

Projected Image Reconstruction Using Higher Order B-Spline (사영된 영상의 고차원 비-스플라인을 이용한 복원법)

  • Kim Sung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.97-108
    • /
    • 2005
  • In this paper a method of reconstructing a desired image through the geometrical transformation and the interpolation techniques is presented by comparing different interpolation schemes. Several different interpolation schemes are compared with respect to the amount of error that is the difference between the original and the reverse-projective transformed images. Higher ordered B-spline interpolation turned to be superior to other techniques in reconstructing the image which is desired to be close to the unskewed image as much as possible. In the results, this paper demonstrates that the reverse projection using the higher ordered B-spline interpolation is superior to those conventional interpolation methods, linear, cubic spline for reconstructing image. In experiments, the error decreases as the order of B-spline increases. The proposed technique is useful for various practical and theoretical applications in the area of satellite, medical, and commercial image processing.

  • PDF

Design of M-Channel IIR Cosine-Modulated Filter Bank and Application to Acoustic Echo Cancellation (M 채널 IIR Cosine-Modulated 필터 뱅크의 설계와 음향 반향 제거에서 응용)

  • Kim, Sang-Gyun;Yoo, Chang-Dong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.556-563
    • /
    • 2002
  • In this paper, a novel method for designing an M-channel, causal, stable IIR cosine-modulated filter bank (CMFB) with near PR property is proposed. The IIR prototype filter is designed with a simple constraint using lattice stucture with 1st order allpass filter components. The IIR prototype filter which is designed by the proposed method has higher stopband attenuation and sharper roll-off characteristic than the one which is designed by the previously proposed method with similar complexity. The proposed M-channel IIR CMFB which is designed from this IIR prototype filter is applied to subband acoustic echo canceller (AEC). We obtained about 15dB higher ERLE using this subband AEC than when M-channel FIR subband AEC with similar complexity.