• Title/Summary/Keyword: algorithm for division

Search Result 2,646, Processing Time 0.037 seconds

Effective identification of dominant fully absorbing sets for Raptor-like LDPC codes

  • Woncheol Cho;Chanho Yoon;Kapseok Chang;Young-Jo Ko
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.7-17
    • /
    • 2023
  • The error-rate floor of low-density parity-check (LDPC) codes is attributed to the trapping sets of their Tanner graphs. Among them, fully absorbing sets dominantly affect the error-rate performance, especially for short blocklengths. Efficient methods to identify the dominant trapping sets of LDPC codes were thoroughly researched as exhaustively searching them is NP-hard. However, the existing methods are ineffective for Raptor-like LDPC codes, which have many types of trapping sets. An effective method to identify dominant fully absorbing sets of Raptor-like LDPC codes is proposed. The search space of the proposed algorithm is optimized into the Tanner subgraphs of the codes to afford time-efficiency and search-effectiveness. For 5G New Radio (NR) base graph (BG) 2 LDPC codes for short blocklengths, the proposed algorithm finds more dominant fully absorbing sets within one seventh of the computation time of the existing search algorithm, and its search-effectiveness is verified using importance sampling. The proposed method is also applied to 5G NR BG1 LDPC code and Advanced Television Systems Committee 3.0 type A LDPC code for large blocklengths.

Wavelet Algorithms for Remote Sensing

  • CHAE Gee Ju;CHOI Kyoung Ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.224-227
    • /
    • 2004
  • From 1980's, the DWT(Discrete Wavelet Transform) is applied to the data/image processing. Many people use the DWT in remote sensing for diversity purposes and they are satisfied with the wavelet theory. Though the algorithm for wavelet is very diverse, many people use the standard wavelet such as Daubechies D4 wavelet and biorthogonal 9/7 wavelet. We will overview the wavelet theory for discrete form which can be applied to the image processing. First, we will introduce the basic DWT algorithm and review the wavelet algorithm: EZW (Embedded Zerotree Wavelet), SPIHT(Set Partitioning in Hierarchical Trees), Lifting scheme, Curvelet, etc. Finally, we will suggest the properties of wavelet algorithm; and wavelet filter for each image processing in remote sensing.

  • PDF

An Improvement on FFT-Based Digital Implementation Algorithm for MC-CDMA Systems (MC-CDMA 시스템을 위한 FFT 기반의 디지털 구현 알고리즘 개선)

  • 김만제;나성주;신요안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.1005-1015
    • /
    • 1999
  • This paper is concerned with an improvement on IFFT (inverse fast Fourier transform) and FFT based baseband digital implementation algorithm for BPSK (binary phase shift keying)-modulated MC-CDMA (multicarrier-code division multiple access) systems, that is functionally equivalent to the conventional implementation algorithm, while reducing computational complexity and bandwidth requirement. We also derive an equalizer structure for the proposed implementation algorithm. The proposed algorithm is based on a variant of FFT algorithm that utilizes a N/2-point FFT/IFFT for simultaneous transformation and reconstruction of two N/2-point real signals. The computer simulations under additive white Gaussian noise channels and frequency selective fading channels using equal gain combiner and maximal ratio combiner diversities, demonstrate the performance of the proposed algorithm.

  • PDF

State set estimation based MPC for LPV systems with input constraint

  • Jeong, Seung-Cheol;Kim, Sung-Hyun;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.530-535
    • /
    • 2004
  • This paper considers a state set estimation (SSE) based model predictive control (MPC) for linear parameter- varying (LPV) systems with input constraint. We estimate, at each time instant, a feasible set of all states which are consistent with system model, measurements and a priori information, rather than the state itself. By combining a state-feedback MPC and an SSE, we design an SSE-based MPC algorithm that stabilizes the closed-loop system. The proposed algorithm is solved by semi-de�nite program involving linear matrix inequalities. A numerical example is included to illustrate the performance of the proposed algorithm.

  • PDF

On the Optimization of Raman Fiber Amplifier using Genetic Algorithm in the Scenario of a 64 nm 320 Channels Dense Wavelength Division Multiplexed System

  • Singh, Simranjit;Saini, Sonak;Kaur, Gurpreet;Kaler, Rajinder Singh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.118-123
    • /
    • 2014
  • For multi parameter optimization of Raman Fiber Amplifier (RFA), a simple genetic algorithm is presented in the scenario of a 320 channel Dense Wavelength Division Multiplexed (DWDM) system at channel spacing of 25 GHz. The large average gain (> 22 dB) is observed from optimized RFA with the optimized parameters, such as 39.6 km of Raman length with counter-propagating pumps tuned to 205.5 THz and 211.9 THz at pump powers of 234.3 mW, 677.1 mW respectively. The gain flattening filter (GFF) has also been optimized to further reduce the gain ripple across the frequency range from 190 to 197.975 THz for broadband amplification.

Numerical Algorithm for Phase Offsets of Binary Codes in the Code Division Multiple Access System

  • Park, Hong-Goo
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.227-230
    • /
    • 2006
  • There has been a growing need for increased capacity in cellular systems. This has resulted in the adoption of the code division multiple access (CDMA) system as a multiple channel access method. Thus, it is important to obtain the phase offsets of binary codes in the CDMA system because distinct phase offsets of the same code are used to distinguish signals received at the mobile station from different base stations. This letter proposes an efficient algorithm to compute the phase offset of a binary code in the CDMA system through the use of the basic facts of number theory and a new notion of the subcodes of a given code. We also formulate the algorithm in a compact form.

  • PDF

Development of the Algorithm for Strapdown Inertial Navigation System for Short Range Navigation

  • Lee, Sang-Jong;Naumenko, C.;Bograd, V.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.81-91
    • /
    • 2000
  • The mechanization of navigation equation is depending on the designer according to the orientation vector relating the body frame to a chosen to inertial and navigation frames for its purposes. This paper considers the appropriate Earth Fixed frame for short range vehicle and develops a mechanization and algorithm for Strapdown Inertial Navigation System(SDINS). This mechanization consists of two parts : translational mechanization and rotational mechanization{attitude determination). The accuracy, availability and performance of this SDINS mechanization are verified on the simulation and the numerical method for integration attitude propagation is compared with a well-known method in a precession motion.

  • PDF

COMPARISON OF SUB-SAMPLING ALGORITHM FOR LRIT IMAGE GENERATION

  • Bae, Hee-Jin;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.109-113
    • /
    • 2007
  • The COMS provides the LRIT/HRIT services to users. The COMS LRIT/HRIT broadcast service should satisfy the 15 minutes timeliness requirement. The requirement is important and critical enough to impact overall performance of the LHGS. HRIT image data is acquired from INRSM output receiving but LRIT image data is generated by sub-sampling HRIT image data in the LHGS. Specially, since LRIT is acquired from sub-sampled HRIT image data, LRIT processing spent more time. Besides, some of data loss for LRIT occurs since LRIT is compressed by lossy JPEG. Therefore, algorithm with the fastest processing speed and simplicity to be implemented should be selected to satisfy the requirement. Investigated sub-sampling algorithm for the LHGS were nearest neighbour algorithm, bilinear algorithm and bicubic algorithm. Nearest neighbour algorithm is selected for COMS LHGS considering the speed, simplicity and anti-aliasing corresponding to the guideline of user (KMA: Korea Meteorological Administration) to maintain the most cloud itself information in a view of meteorology. But the nearest neighbour algorithm is known as the worst performance. Therefore, it is studied in this paper that the selection of nearest neighbour algorithm for the LHGS is reasonable. First of all, characteristic of 3 sub-sampling algorithms is studied and compared. Then, several sub-sampling algorithm were applied to MTSAT-1R image data corresponding to COMS HRIT. Also, resized image was acquired from sub-sampled image with the identical sub-sampling algorithms applied to sub-sampling from HRIT to LRIT. And the difference between original image and resized image is compared. Besides, PSNR and MSE are calculated for each algorithm. This paper shows that it is appropriate to select nearest neighbour algorithm for COMS LHGS since sub-sampled image by nearest neighbour algorithm is little difference with that of other algorithms in quality performance from PSNR.

  • PDF

Design of Efficient Flicker Detector for CMOS Image Sensor (CMOS Image sensor 를 위한 효과적인 플리커 검출기 설계)

  • Lee, Pyeong-Woo;Lee, Jeong-Guk;Kim, Chae-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.739-742
    • /
    • 2005
  • In this paper, an efficient detection algorithm for the flicker, which is caused by mismatching between light frequency and exposure time at CMOS image sensor (CIS), is proposed. The flicker detection can be implemented by specific hardware or complex signal processing logic. However it is difficult to implement on single chip image sensor, which has pixel, CDS, ADC, and ISP on a die, because of limited die area. Thus for the flicker detection, the simple algorithm and high accuracy should be achieved on single chip image sensor,. To satisfy these purposes, the proposed algorithm organizes only simple operation, which calculates the subtraction of horizontal luminance mean between continuous two frames. This algorithm was verified with MATLAB and Xilinx FPGA, and it is implemented with Magnachip 0.18 standard cell library. As a result, the accuracy is 95% in average on FPGA emulation and the consumed gate count is about 7,500 gates (@40MHz) for implementation using Magnachip 0.18 process.

  • PDF

A BLMS Adaptive Receiver for Direct-Sequence Code Division Multiple Access Systems

  • Hamouda Walaa;McLane Peter J.
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.243-247
    • /
    • 2005
  • We propose an efficient block least-mean-square (BLMS) adaptive algorithm, in conjunction with error control coding, for direct-sequence code division multiple access (DS-CDMA) systems. The proposed adaptive receiver incorporates decision feedback detection and channel encoding in order to improve the performance of the standard LMS algorithm in convolutionally coded systems. The BLMS algorithm involves two modes of operation: (i) The training mode where an uncoded training sequence is used for initial filter tap-weights adaptation, and (ii) the decision-directed where the filter weights are adapted, using the BLMS algorithm, after decoding/encoding operation. It is shown that the proposed adaptive receiver structure is able to compensate for the signal-to­noise ratio (SNR) loss incurred due to the switching from uncoded training mode to coded decision-directed mode. Our results show that by using the proposed adaptive receiver (with decision feed­back block adaptation) one can achieve a much better performance than both the coded LMS with no decision feedback employed. The convergence behavior of the proposed BLMS receiver is simulated and compared to the standard LMS with and without channel coding. We also examine the steady-state bit-error rate (BER) performance of the proposed adaptive BLMS and standard LMS, both with convolutional coding, where we show that the former is more superior than the latter especially at large SNRs ($SNR\;\geq\;9\;dB$).