DOI QR코드

DOI QR Code

Effective identification of dominant fully absorbing sets for Raptor-like LDPC codes

  • Woncheol Cho (Mobile Communication Research Division, Electronics and Telecommunications Research Institute) ;
  • Chanho Yoon (Mobile Communication Research Division, Electronics and Telecommunications Research Institute) ;
  • Kapseok Chang (Mobile Communication Research Division, Electronics and Telecommunications Research Institute) ;
  • Young-Jo Ko (Mobile Communication Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2021.07.29
  • Accepted : 2022.03.22
  • Published : 2023.02.20

Abstract

The error-rate floor of low-density parity-check (LDPC) codes is attributed to the trapping sets of their Tanner graphs. Among them, fully absorbing sets dominantly affect the error-rate performance, especially for short blocklengths. Efficient methods to identify the dominant trapping sets of LDPC codes were thoroughly researched as exhaustively searching them is NP-hard. However, the existing methods are ineffective for Raptor-like LDPC codes, which have many types of trapping sets. An effective method to identify dominant fully absorbing sets of Raptor-like LDPC codes is proposed. The search space of the proposed algorithm is optimized into the Tanner subgraphs of the codes to afford time-efficiency and search-effectiveness. For 5G New Radio (NR) base graph (BG) 2 LDPC codes for short blocklengths, the proposed algorithm finds more dominant fully absorbing sets within one seventh of the computation time of the existing search algorithm, and its search-effectiveness is verified using importance sampling. The proposed method is also applied to 5G NR BG1 LDPC code and Advanced Television Systems Committee 3.0 type A LDPC code for large blocklengths.

Keywords

Acknowledgement

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2018-0-00218, Speciality Laboratory for Wireless Backhaul Communications based on Very High Frequency)

References

  1. M. Sybis, K. Wesolowski, K. Jayasinghe, V. Venkatasubramanian, and V. Vukadinovic, Channel coding for ultra-reliable low-latency communication in 5G systems, (IEEE 84th Vehicular Technology Conference, Montreal, Canada), 2016. https://doi.org/10.1109/VTCFall.2016.7880930
  2. M. C. Coskun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and F. Steiner, Efficient error-correcting codes in the short blocklength regime, Phys. Commun. 34 (2019), 66-79. https://doi.org/10.1016/j.phycom.2019.03.004
  3. T. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, Protograph-based Raptor-like LDPC codes, IEEE Trans. Commun. 63 (2015), no. 5, 1522-1532. https://doi.org/10.1109/TCOMM.2015.2404842
  4. T. Chen, D. Divsalar, J. Wang, and R. D. Wesel, Protographbased Raptor-like LDPC codes for rate compatibility with short blocklengths, (IEEE Global Telecommunications Conference - GLOBECOM 2011, Houston,TX, USA), 2011. https://doi.org/10.1109/GLOCOM.2011.6134051
  5. NR; Multiplexing and channel coding, version 1.0.1, Release 15, 3GPP Standard TS 38.212, 2017.
  6. K.-J. Kim, S. Myung, S.-I. Park, J.-Y. Lee, M. Kan, Y. Shinohara, J.-W. Shin, and J. Kim, Low-density parity-check codes for ATSC 3.0, IEEE Trans. Broadcast. 62 (2016), no. 1, 189-196. https://doi.org/10.1109/TBC.2016.2515538
  7. ATSC Standard Physical Layer Protocol Document A/322, Adv. Telev. Syst. Committee, Washington, DC, USA, 2021.
  8. T. J. Richardson and R. L. Urbanke, Efficient encoding of lowdensity parity-check codes, IEEE Trans. Inf. Theory 47 (2001), no. 2, 638-656. https://doi.org/10.1109/18.910579
  9. T. Nguyen, T. Nguyen Tan, and H. Lee, Efficient QC-LDPC encoder for 5G New Radio, Electron. 8 (2019), no. 6, 1-15.
  10. J. H. Bae, A. Abotabl, H.-P. Lin, K.-B. Song, and J. Lee, An overview of channel coding for 5G NR cellular communications, APSIPA Trans. Signal Inf Process. 8 (2019), 1-14.
  11. T. Richardson and S. Kudekar, Design of low-density parity check codes for 5G New Radio, IEEE Commun. Mag. 56 (2018), no. 3, 28-34. https://doi.org/10.1109/MCOM.2018.1700839
  12. W. Ryan and S. Lin, Channel codes: Classical and modern, Cambridge University Press, 2009.
  13. D. E. Hocevar, A reduced complexity decoder architecture via layered decoding of LDPC codes, (IEEE Workshop onSignal Processing Systems, Austin, TX, USA), 2004, pp. 107-112.
  14. Samsung, Design of short-length LDPC codes, 3GPP TSG RAN WG1, Tdoc R1-1609069, Meeting #86bis, 2016.
  15. S. Landner and O. Milenkovic, Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes, (International Conference on Wireless Networks, Communications and Mobile Computing, Maui, HI, USA), 2005, pp. 630-635.
  16. M. Karimi and A. H. Banihashemi, Efficient algorithm for finding dominant trapping sets of LDPC codes, IEEE Trans. Inf. Theory 58 (2012), no. 1, 6942-6958. https://doi.org/10.1109/TIT.2012.2205663
  17. C. A. Cole, S. G. Wilson, E. Hall, and T. R. Giallorenzi, A general method for finding low error rates of LDPC codes, arXiv preprint, 2006, pp. 1-30. https://doi.org/10.48550/arXiv.cs/0605051
  18. M. Otarinia, Absorbing sets and error floor performance of the 5G New Radio code, University of Notre Dame, 2019.
  19. Y. Hashemi and A. H. Banihashemi, Characterization of elementary trapping sets in irregular LDPC codes and the corresponding efficient exhaustive search algorithms, IEEE Trans. Inf. Theory 64 (2018), no. 5, 3411-3430. https://doi.org/10.1109/TIT.2018.2799627
  20. IEEE Standard for Information Technology-Local and Metropolitan Area Networks-Specific Requirements-Part 11 Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 5: Enhancements for higher throughput, 2009, IEEE Standard 802.11n-2009.
  21. IEEE Standard for Local and Metropolitan Area Networks- Part 16, Air interface for fixed and mobile broadband wireless access systems amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1, 2006, IEEE Standard 802.16e-2005 and 802.16-2004/Cor 1-2005.
  22. E. Cavus, C. L. Haymes, and B. Daneshrad, An IS simulation technique for very low BER performance evaluation of LDPC codes, (IEEE International Conference on Communications, Istanbul, Turkey), 2006. https://doi.org/10.1109/ICC.2006.254893
  23. S.-R. Kim and D.-J. Shin, Lowering error floors of systematic LDPC codes using data shortening, IEEE Commun. Lett. 17 (2013), no. 12, 2348-2351. https://doi.org/10.1109/LCOMM.2013.110413.131936