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ABSTRACT⎯There has been a growing need for increased 
capacity in cellular systems. This has resulted in the adoption 
of the code division multiple access (CDMA) system as a 
multiple channel access method. Thus, it is important to obtain 
the phase offsets of binary codes in the CDMA system because 
distinct phase offsets of the same code are used to distinguish 
signals received at the mobile station from different base 
stations. This letter proposes an efficient algorithm to compute 
the phase offset of a binary code in the CDMA system through 
the use of the basic facts of number theory and a new notion of 
the subcodes of a given code. We also formulate the algorithm 
in a compact form.  

Keywords⎯Binary code, phase offset, code division multiple 
access system, subcode. 

I. Introduction 

Let },1or0,1,{ −=== βαβαS  and Bn the set of all  
n-tuple binary codes ),,...,,( 110 −= ncccC where Sci ∈ for 
each i with .10 −≤≤ ni We define a cyclic shift to the left 
operator L:Bn→Bn by L(C) = (c1, c2 ,…, cn-1, c0) for all C in Bn. 
For each nonnegative integer i, we define by Li the i-times 
function composition of L, where L0 is defined as the identity 
function on Bn. Note that if m and t are integers with m≡    

t(mod n), then Lm(C)=Lt(C) for a code C in Bn. We denote Li(C) 
by Ci for each nonnegative integer i, and define C0=C and (Cs)t 

= Cs+t for any two integers s, t. For each pair of ,, nBDC ∈  
we define the relation ~ on Bn as C ~ D iff there exists an 
integer i with 10 −≤≤ ni  such that Ci = D. Then, it can be 
shown that the relation ~ is an equivalent relation on Bn. Thus, 
Bn can be partitioned into cells, so-called equivalent classes, 
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induced from the relation. If nBC ∈ , then the equivalent class 
C containing C can be written as 

}.10,{ −≤≤∈= niBCCC ni  

Next, we define a function Z→nB:σ  by 
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for the set Z of integers and all C in Bn. Such a function σ will be 
called a σ-function on Bn. Let R be a binary code in .C  Then, 
the phase offset PR(C) of a binary code C in C  with respect to 
R is defined as the least nonnegative integer m such that 

                       Rm = C.                  (2) 

Such a code R will be called a (zero offset) reference code in 
C . Note that the phase offset of the reference code with respect 
to itself is equal to zero, and can be chosen arbitrarily in C . 

Willet [3] proposed a method to calculate the phase offset of 
a maximal length sequence with minimum period 2n–1, so-
called an m-sequence, over a Galois field GF(2) of order 2 as 
an application. That is, if ,...),()( 100 uuuu i == ∞  is a pseudo-
random noise (PN) code with minimum period 2n–1 over 
GF(2), then the phase offset M of u can be obtained by 
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where }0,120{ =−≤≤= +ki
n

k uiiI and .}1,120{ =−≤≤= +ki
n

k uiiJ  
In [1], we can see a method to calculate the value of the 

phase offset of a binary code nBC ∈ by computing the 
reduction of ))(mod( nCaσ  for a proper integer a, provided 
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1))()(,gcd( =− ββα Cvn  for ,, S∈βα  where )(βCv  is 
the number of β’s in C. Note that the phase offsets (3) of the 
above m-sequences can also be calculated using the reduction.  

In this letter, we propose a new numerical algorithm for the 
phase offset (NAPO) of an n-tuple binary code C in the case of 

.1))()(,gcd( ≠− ββα Cvn  It will be done by investigating the 
value of the σ -function defined in (1) for a given binary code 

nBC ∈ and the phase offsets of the subcodes of C as a new 
notion. 

II. A Modified NAPO Based on a σ -Function 

We can easily modify and simplify the main results of [1] as 
in Theorem 1. We have omitted the proofs because they are 
almost the same as the proofs of the main results in [1]. 

Theorem 1. Let C be a binary code in Bn satisfying  
1))()(gcd(n, =− ββα Cv for α, β in C. If σ is a σ -function on 

Bn, then the following hold: 
(a) For each fixed s, Z∈t with 1,0 −≤≤ nts , 

).)(mod)(()()()( nstvCC C
st −−−≡− ββασσ      (4) 

(b) If there exists an integer Z∈a  such that a(α - β) vC(β)≡ 

-1(mod n), then )(mod))()(( niCCa ii ≡−σσ for each fixed 
integer i with 10 −≤≤ ni .  
(c) If a is an integer defined in (b), then a set 

  }10))(mod({ −≤≤ ninCa iσ             (5) 

forms a complete system of residues modulo n. 

The set }10))(mod({ −≤≤ ninCiσ also forms a complete 
system of residues modulo n with the same condition in 
Theorem 1. However, the set in (5) gives us a nice ordering of 
residues modulo n; that is, it becomes 

{n – j +1, n – j +2,…, n–1, 0, 1,…, n – j} 

for an integer j with 10 −≤≤ nj such that 0)( ≡jCσ (mod 
n). In this case, we can have distinct and ordered phase offsets 
of the binary codes inC . For each fixed i with ,10 −≤≤ ni  
the phase offset PR(Ci) of Ci’s with respect to a reference code 
R is a nonnegative integer defined by  

))(mod()( nCaCP ii
R σ≡              (6) 

for an integer a with a(α – β) vC(β)≡-1(mod n).  
For example, if 

,),,,,,,,,,,,,,,( 15BC ∈= βαβαβαβββαβααβα  

then ),15(mod0)15()( 14

0
4 ≡−≡ ∑ =i iciCσ where each ci is an 

i-th component of C. So, C4 becomes a reference code of C. 
Tables 1 and 2 illustrate the values of distinct phase 
offsets 4 ( )i

CP C of Ci’s with respect to C4 for all i with 
.10 −≤≤ ni  

 

Table 1. PR(Ci) with α =1, β =0, gcd(15, vC(0))=1, and a =1. 

i Ci = (ci, ci+1,…,ci-1) σ(Ci) σ(Ci)
(mod n) PR(Ci)

0 (1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0) 62 2 11 

1 (0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1) 54 9 12 

2 (1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0) 61 1 13 

3 (1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1) 53 8 14 

4 (0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1) 45 0 0 

5 (1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0) 52 7 1 

6 (0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1) 44 14 2 

7 (0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0) 51 6 3 

8 (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0) 58 13 4 

9 (1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,. 0, 0) 65 5 5 

10 (0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,. 0, 0, 1) 57 12 6 

11 (1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,. 0, 0, 1, 0) 64 4 7 

12 (0, 1, 0, 1, 0, 1, 1, 0, 1, 0,. 0, 0, 1, 0, 1) 56 11 8 

13 (1, 0, 1, 0, 1, 1, 0, 1, 0,. 0, 0, 1, 0, 1, 0) 63 3 9 

14 (0, 1, 0, 1, 1, 0, 1, 0,. 0, 0, 1, 0, 1, 0, 1) 55 10 10 

Table 2. PR(Ci) with α =1, β =–1, gcd(15, 2vC(–1))=1, and a =14. 

i Ci = (ci, ci+1,…,ci-1) σ(Ci) σ(Ci)
(mod n) PR(Ci)

0 (1, –1,1,1, –1,1, –1, –1, –1,1, –1,1, –1,1, –1) 4 4 11 

1 (–1,1,1, –1,1, –1, –1, –1,1, –1,1, –1,1, –1,1) -12 3 12 

2 (1,1, –1,1, –1, –1, –1,1, –1,1, –1,1, –1,1, –1) 2 2 13 

3 (1, –1,1, –1, –1, –1,1, –1,1, –1,1, –1,1, –1,1) -14 1 14 

4 (–1,1, –1, –1, –1,1, –1,1, –1,1, –1,1, –1,1,1) -30 0 0 

5 (1, –1, –1, –1,1, –1,1, –1,1, –1,1, –1,1,1, –1) -16 14 1 

6 (–1, –1, –1,1, –1,1, –1,1, –1,1, –1,1,1, –1,1) -32 13 2 

7 (–1, –1,1, –1,1, –1,1, –1,1, –1,1,1, –1,1, –1) -18 12 3 

8 (–1,1, –1,1, –1,1, –1,1, –1,1,1, –1,1, –1, –1) -4 11 4 

9 (1, –1,1, –1,1, –1,1, –1,1,1, –1,1, –1, –1, –1) 10 10 5 

10 (–1,1, –1,1, –1,1, –1,1,1, –1,1, –1, –1, –1,1) -6 9 6 

11 (1, –1,1, –1,1, –1,1,1, –1,1, –1, –1, –1,1, –1) 8 8 7 

12 (–1,1, –1,1, –1,1,1, –1,1, –1, –1, –1,1, –1,1) -8 7 8 

13 (1, –1,1, –1,1,1, –1,1, –1, –1, –1,1, –1,1, –1) 6 6 9 

14 (–1,1, –1,1,1, –1,1, –1, –1, –1,1, –1,1, –1,1) -10 5 10 

  



ETRI Journal, Volume 28, Number 2, April 2006 Hong Goo Park   229 

III. Definitions of d-Subcodes and Reference Codes                                                       
Based on a σd -Function 

If 1))()(,gcd( ≠− ββα Cvn in Theorem 1, then we fail to 
obtain the distinct phase offsets of Ci’s since there does not 
exist an integer a such that a(α - β)vC(β)≡-1(mod n). Now, we 
need to find a possible method to have the distinct phase offsets 
of binary codes in C with respect to a proper reference code. 
As an example, see Table 3. 

Let C = (c0, c1,…, cn-1) be a binary code in Bn with  
.))()(,gcd( dvn C =− ββα Then, a code  

(c0, cn/d, c2n/d ,…, c(d-1)n /d) 

is called a d -subcode of C, denoted by Sd(C). It is easy to see 
that Sd(Cjn/d) = (cjn/d, c(j+1)n/d,…,c(j+d-1)n/d) for each j with 

,10 −≤≤ dj  where c(j+k)n/d = ct with 1,0 −≤≤ dkj  
for ).(mod/)( ddnkjt +≡  It follows from Theorem 1 that if 

,1))()(,gcd( )( / =− ββα djnd CSvd  then a set 

 ∈s{ [[d]] }10),(mod))(( / −≤≤≡ djdsCS djn
dσ  

forms a complete system of residues modulo d, where     
[[d]] ={0, 1,…, d –1}. 

For example, consider a code C = ,,,,,,,,( βααβαβαβ  
.),,,,,, 15B∈αβαββββ ,3))()(,15gcd( =− ββα Cv and 

therefore, S3(Cj5) = (cj5, c(j+1)5, c(j+2)5) for j = 0, 1, 2. Thus,  

.)3())(( 5)(

2

0

5
3 ij

i

j ciCS +
=
∑ −=σ  

Hence, for j = 0, 1, 2, the values of the σ -function are either 
{2+ β, 0, 2 β +1}={2, 0, 1} if β =0, or {2+ β, 0, 2 β +1}={1, 0, 
2} if β = 1− , which is a complete system of residues modulo  
d = 3. 

As the third column in Table 3, we cannot use the former 
definition given in (6) if .1))()(,gcd( ≠− ββα Cvn  Thus, we 
need to find an efficient reference code in C  to distinguish 
among the phase offsets of binary codes in C . 

For a given binary code ,nBC ∈ suppose that 
),(mod)( dC γσ ≡ where ))()(,gcd( ββα Cvnd −= and γ is 

an integer with .10 −≤≤ dγ  Then, we define a σd-function 
by γσσ −= )()( CCd  for the σ-function on Bn. Let s be a 
nonnegative integer with )/(mod)( dndsRa d ≡σ for the 
integer a such that )./(mod)()( dndva R −≡− ββα  If a 
code CR ∈  satisfies the next two properties, 

),(mod0))((),/(mod0)( dRSdnR s
dd ≡≡ −σσ     (7) 

then we choose such a code R as a reference code of C in C . 
Note that there always exists a unique R satisfying two 

conditions in (7) since .0),/gcd( ddn  In fact, we will see 
that the required reference code can be determined naturally by 
the new NAPO given in the next section. 

IV. A New NAPO Based on a σd -Function 

We choose a binary code nBC ∈ and suppose that the 
binary code C satisfies the following two conditions: 

(a) ,))()(,gcd( dvn C =− ββα and 
(b) .1))()(,gcd( )( =− ββα CSd

vd  
Then, consider a set }10{ −≤≤= niCC i and a unique 

integer X0 with 1)/(0 0 −≤≤ dnX  satisfying 

)/)(mod(0 dnCadX i
dσ≡              (8) 

for the integer a such that )./(mod)()( dndva C −≡− ββα  
Also, consider a unique integer Y0 with 10 0 −≤≤ dY  

satisfying  

)))(mod(( 0
0 dCSbY Xi

d
−≡ σ             (9) 

for the integerb such that ).(mod1)()( )( dvb CSd
−≡− ββα  

If R is a reference code of CC ∈ satisfying (7), then we can 
choose unique nonnegative integers q and r with 

1)/(0 −≤≤ dnr such that 

rqdnCP i
R += )/()(              (10) 

for each fixed CC i ∈  with .10 −≤≤ ni  
Then, we will show that r = X0 and q = Y0. It is clear that 

).)(mod()()()()( dRCRCC i
d

i
d

i
d σσσσσ −≡−= Since 

( ) ( ) ( ) ( )(mod )i i
d C RC P C nσ α β ν β≡ − −  by Theorem 1, 

( ) ( ) ( ) ( )i i
d C RC P C ntσ α β ν β+ − = for some nonnegative 

integers t. Hence, 

0

( ) ( ) ( ) ( )
( ) ( ) (mod / ).

i i
d C R

C

C P C
X n d

σ α β ν β
α β ν β

≡ − −

≡ − −
 

So, 

0 ( ) /
[ ( ) ( ) / ]

(mod / ).

i
d

C

X a C d
a d r

r n d

σ
α β ν β

≡

≡ − −

≡

         (11) 

On the other hand, it is clear that PR(Ci-X0)=nq/d. Thus, 
Ci-X0=Cnq /d. This implies that  
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)]()([
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According to (8) through (12), the required phase offsets 
PR(Ci) of Ci’s with respect to R can be obtained by 

PR(Ci)=(n/d)q+r=X0+(n/d)Y0.         (13) 

It is easy to see that if we choose R=Ct for an integer t with 
,10 −≤≤ nt then )(mod)( ntiCP i

R −≡  for i = 0, 1,…, n–1. 
Therefore }1,...,1,0)({ −= niCP i

R forms a complete well-
ordering system of residues modulo n. If d = 1 in (13), then we 
can easily see that ),)(mod()( nCaCP ii

R σ≡ which indicates 
the phase offset given in (6).  

For a given code  

,),,,,,,,,,,,,,,( 15BC ∈= αβαβββββααβαβαβ  

the distinct phase offsets PR(Ci) of Ci’s with respect to a 
reference code R = C12 are calculated in Table 3 through the use 
of (7) and the algorithm given in (13). As the results from the 
table show, the new algorithm is very efficient to obtain distinct 
and well-ordering phase offsets of the shifted binary codes 
given inC . 
 

Table 3. PR(Ci) with α =1, β =0, gcd(15, vC(0))=3, a =3, and b=1.
PR(Ci) with α =1, β =-1, gcd(15, 2vC(-1))=3, a =4, and b=2.

σ(Ci) σ(Ci) (mod n) σd(Ci) (mod n) 
Ci 

β = 0 β = -1 β = 0 β = -1 β = 0 β = -1 
X0 Y0 PR(Ci)

C0 49 –22 4 8 3 6 3 0 3 

C1 55 –10 10 5 9 3 4 0 4 

C2 46 –28 1 2 0 0 0 1 5 

C3 52 –16 7 14 6 12 1 1 6 

C4 43 –34 13 11 12 9 2 1 7 

C5 49 –22 4 8 3 6 3 1 8 

C6 40 –40 10 5 9 3 4 1 9 

C7 31 –58 1 2 0 0 0 2 10 

C8 37 –46 7 14 6 12 1 2 11 

C9 43 –34 13 11 12 9 2 2 12 

C10 49 –22 4 8 3 6 3 2 13 

C11 55 –10 10 5 9 3 4 2 14 

C12 61 2 1 2 0 0 0 0 0 

C13 52 –16 7 14 6 12 1 0 1 

C14 58 –4 13 11 12 9 2 0 2 

 

 
V. Conclusion 

Interim Standard 95 (IS-95) [6] uses two PN generators to 
spread the signal power uniformly over a physical bandwidth 
of about 1.25 MHz, and the generated PN codes are referred to 

as the reference codes whose characteristic polynomials are 
primitive polynomials with degree 15 over a Galois field of 
order 2, and which have the same initial state code 
(000000000000001) of length 15. The phase offsets of the 
shifted binary codes in a signal set produced by each reference 
PN code play an important part in distinguishing between the 
received signal and locally generated signals in a mobile station 
of each cell, as well as in the acquisition of the received signals. 
Note that in this system, the start of the reference PN code is 
chosen arbitrarily without any background of the systematic 
and mathematical elaboration. In this letter, we developed an 
exact definition of a reference code in an arbitrary signal set 
C , and described a numerical algorithm for phase offsets 
based on a σ-function modified from the results in [1] with the 
condition .1))()(,gcd( =− ββα Cvn Furthermore, in the case 
of ,1))()(,gcd( ≠− ββα Cvn we proposed a new numerical 
algorithm to obtain the distinct and well-ordered phase offsets 
of shifted binary codes with respect to a reference code based 
on the σd-function in section IV.  

In the CDMA system of IS-95, if we consider a reference PN 
code C generated by a PN generator such that the number of 
0’s in the given C is equal to 16383 and the signal set 
is },120{ 15 −<≤= iCC i then )12)(mod(2)( 15 −≡ ii

R CCP σ  
by (13). Thus, it follows from this that if we choose Ci 
satisfying 152 ( ) 0(mod 2 1)iCσ ≡ − as a reference PN code 
inC , then the number of shifted times inC with respect to the 
reference PN code is identical with the value of the required 
phase offset. 
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