• Title/Summary/Keyword: algorithm expression

Search Result 516, Processing Time 0.023 seconds

Emotion Recognition and Expression Method using Bi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 감정인식 및 표현기법)

  • Joo, Jong-Tae;Jang, In-Hun;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.754-759
    • /
    • 2007
  • In this paper, we proposed the Bi-Modal Sensor Fusion Algorithm which is the emotional recognition method that be able to classify 4 emotions (Happy, Sad, Angry, Surprise) by using facial image and speech signal together. We extract the feature vectors from speech signal using acoustic feature without language feature and classify emotional pattern using Neural-Network. We also make the feature selection of mouth, eyes and eyebrows from facial image. and extracted feature vectors that apply to Principal Component Analysis(PCA) remakes low dimension feature vector. So we proposed method to fused into result value of emotion recognition by using facial image and speech.

A Study on Emotion-Modeling Algorithm of Entertainment Robot (엔터테인먼트 로봇의 강성 알고리즘 연구)

  • Choi, Jae-Il;Kim, Seung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.505-508
    • /
    • 2002
  • An emotionally modeled robot is dealt in this paper. The emotional model is required especially in the entertainment robot. Recently, the entertainment robots have been developed as the next generation of electronic toys. They require several capabilities such as perceiving, acting, communication, and surviving. The owner recognizes the communication with a entertainment robot by observing its expression and reaction. The expression is realized by emotion-based actions based on moving, dancing, sounding, speaking, and lighting. Therefore, we propose an emotional modeling algorithm, using the fuzzy logic system, in this paper. Good performance of the algorithm is confirmed by the result of a simulation.

  • PDF

Optimization of Deep Learning Model Based on Genetic Algorithm for Facial Expression Recognition (얼굴 표정 인식을 위한 유전자 알고리즘 기반 심층학습 모델 최적화)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.85-92
    • /
    • 2020
  • Deep learning shows outstanding performance in image and video analysis, such as object classification, object detection and semantic segmentation. In this paper, it is analyzed that the performances of deep learning models can be affected by characteristics of train dataset. It is proposed as a method for selecting activation function and optimization algorithm of deep learning to classify facial expression. Classification performances are compared and analyzed by applying various algorithms of each component of deep learning model for CK+, MMI, and KDEF datasets. As results of simulation, it is shown that genetic algorithm can be an effective solution for optimizing components of deep learning model.

(Pattern Search for Transcription Factor Binding Sites in a Promoter Region using Genetic Algorithm) (유전자 알고리즘을 이용한 프로모터 영역의 전사인자 결합부위 패턴 탐색)

  • 김기봉;공은배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.487-496
    • /
    • 2003
  • The promoter that plays a very important role in gene expression as a signal part has various binding sites for transcription factors. These binding sites are located on various parts in promoter region and have highly conserved consensus sequence patterns. This paper presents a new method for the consensus pattern search in promoter regions using genetic algorithm, which adopts the assumption of N-occurrence-per-dataset model of MEME algorithm and employs the advantage of Wataru method in determining the pattern length. Our method will be employed by genome researchers who try to predict the promoter region on anonymous DNA sequence and to find out the binding site for a specific transcription factor.

A Study on Enhancing the Performance of Detecting Lip Feature Points for Facial Expression Recognition Based on AAM (AAM 기반 얼굴 표정 인식을 위한 입술 특징점 검출 성능 향상 연구)

  • Han, Eun-Jung;Kang, Byung-Jun;Park, Kang-Ryoung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.299-308
    • /
    • 2009
  • AAM(Active Appearance Model) is an algorithm to extract face feature points with statistical models of shape and texture information based on PCA(Principal Component Analysis). This method is widely used for face recognition, face modeling and expression recognition. However, the detection performance of AAM algorithm is sensitive to initial value and the AAM method has the problem that detection error is increased when an input image is quite different from training data. Especially, the algorithm shows high accuracy in case of closed lips but the detection error is increased in case of opened lips and deformed lips according to the facial expression of user. To solve these problems, we propose the improved AAM algorithm using lip feature points which is extracted based on a new lip detection algorithm. In this paper, we select a searching region based on the face feature points which are detected by AAM algorithm. And lip corner points are extracted by using Canny edge detection and histogram projection method in the selected searching region. Then, lip region is accurately detected by combining color and edge information of lip in the searching region which is adjusted based on the position of the detected lip corners. Based on that, the accuracy and processing speed of lip detection are improved. Experimental results showed that the RMS(Root Mean Square) error of the proposed method was reduced as much as 4.21 pixels compared to that only using AAM algorithm.

A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model (Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구)

  • Kim, Dong-Ju;Shin, Jeong-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • This paper introduces an appearance-based facial expression recognition method using ASM landmarks which is used to acquire a detailed face region. In particular, EHMM-based algorithm and SVM classifier with histogram feature are employed to appearance-based facial expression recognition, and performance evaluation of proposed method was performed with CK and JAFFE facial expression database. In addition, performance comparison was achieved through comparison with distance-based face normalization method and a geometric feature-based facial expression approach which employed geometrical features of ASM landmarks and SVM algorithm. As a result, the proposed method using ASM-based face normalization showed performance improvements of 6.39% and 7.98% compared to previous distance-based face normalization method for CK database and JAFFE database, respectively. Also, the proposed method showed higher performance compared to geometric feature-based facial expression approach, and we confirmed an effectiveness of proposed method.

Weighted Soft Voting Classification for Emotion Recognition from Facial Expressions on Image Sequences (이미지 시퀀스 얼굴표정 기반 감정인식을 위한 가중 소프트 투표 분류 방법)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1175-1186
    • /
    • 2017
  • Human emotion recognition is one of the promising applications in the era of artificial super intelligence. Thus far, facial expression traits are considered to be the most widely used information cues for realizing automated emotion recognition. This paper proposes a novel facial expression recognition (FER) method that works well for recognizing emotion from image sequences. To this end, we develop the so-called weighted soft voting classification (WSVC) algorithm. In the proposed WSVC, a number of classifiers are first constructed using different and multiple feature representations. In next, multiple classifiers are used for generating the recognition result (namely, soft voting) of each face image within a face sequence, yielding multiple soft voting outputs. Finally, these soft voting outputs are combined through using a weighted combination to decide the emotion class (e.g., anger) of a given face sequence. The weights for combination are effectively determined by measuring the quality of each face image, namely "peak expression intensity" and "frontal-pose degree". To test the proposed WSVC, CK+ FER database was used to perform extensive and comparative experimentations. The feasibility of our WSVC algorithm has been successfully demonstrated by comparing recently developed FER algorithms.

Application Examples Applying Extended Data Expression Technique to Classification Problems (패턴 분류 문제에 확장된 데이터 표현 기법을 적용한 응용 사례)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.9-15
    • /
    • 2018
  • The main goal of extended data expression is to develop a data structure suitable for common problems in ubiquitous environments. The greatest feature of this method is that the attribute values can be represented with probability. The next feature is that each event in the training data has a weight value that represents its importance. After this data structure has been developed, an algorithm has been devised that can learn it. In the meantime, this algorithm has been applied to various problems in various fields to obtain good results. This paper first introduces the extended data expression technique, UChoo, and rule refinement method, which are the theoretical basis. Next, this paper introduces some examples of application areas such as rule refinement, missing data processing, BEWS problem, and ensemble system.

New Rectangle Feature Type Selection for Real-time Facial Expression Recognition (실시간 얼굴 표정 인식을 위한 새로운 사각 특징 형태 선택기법)

  • Kim Do Hyoung;An Kwang Ho;Chung Myung Jin;Jung Sung Uk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.130-137
    • /
    • 2006
  • In this paper, we propose a method of selecting new types of rectangle features that are suitable for facial expression recognition. The basic concept in this paper is similar to Viola's approach, which is used for face detection. Instead of previous Haar-like features we choose rectangle features for facial expression recognition among all possible rectangle types in a 3${\times}$3 matrix form using the AdaBoost algorithm. The facial expression recognition system constituted with the proposed rectangle features is also compared to that with previous rectangle features with regard to its capacity. The simulation and experimental results show that the proposed approach has better performance in facial expression recognition.

Method of an Assistance for Evaluation of Learning using Expression Recognition based on Deep Learning (심층학습 기반 표정인식을 통한 학습 평가 보조 방법 연구)

  • Lee, Ho-Jung;Lee, Deokwoo
    • Journal of Engineering Education Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2020
  • This paper proposes the approaches to the evaluation of learning using concepts of artificial intelligence. Among various techniques, deep learning algorithm is employed to achieve quantitative results of evaluation. In particular, this paper focuses on the process-based evaluation instead of the result-based one using face expression. The expression is simply acquired by digital camera that records face expression when students solve sample test problems. Face expressions are trained using convolutional neural network (CNN) model followed by classification of expression data into three categories, i.e., easy, neutral, difficult. To substantiate the proposed approach, the simulation results show promising results, and this work is expected to open opportunities for intelligent evaluation system in the future.