• 제목/요약/키워드: alginate degrading activity

Search Result 22, Processing Time 0.034 seconds

Isolation of Alginate-Degrading Bacteria and Production of Alginate-Degrading Activities by the Bacteria (알긴산 분해 세균의 분리 및 생육 특성)

  • 주동식;조순영;이응호
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.207-213
    • /
    • 1993
  • Total 176 alginate-degrading bacterial strains were isolated from marine moluscus, marine echonodermata, seaweed, and soils. Among the isolates, five strains (No. 28, 51, 79, 135, and 145) had higher level of alginate-degrading activity. The isolate No. 28, 51, 79, and 135 were identified as the genus Enterobacter and the strain No. 145 as the genus Vibrio. We used these strains to examine the optimal conditions for the production of alginate-degrading activity.

  • PDF

Isolation and Characterization of Novel Alginate-Degrading Pseudoalteromonas sp. Y-4

  • Cho, Hyeon-Ah;Kim, Hyun-Woo;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.259-263
    • /
    • 2012
  • To isolate an alginate-degrading bacterium, we conducted a single colony isolation using a solid medium containing alginate as the sole carbon source. A marine bacterium Y-4 capable of degrading alginate was isolated from seawater. The strain was identified to be Pseudoalteromonas sp., based on morphological, biochemical, 16S rDNA homology, and phylogenetic analyses. Moreover, Pseudoalteromonas sp. Y-4 exhibited alginate lyase activity in the presence of 4% alginate even though many known alginate-degrading bacteria degrade in the range of 0.5-1% alginate. The optimum culture conditions for the Y-4 strain were 2% alginate, pH 8.0, and 3% NaCl at $30^{\circ}C$. The highest alginate lyase activity was also observed under the same conditions. To our knowledge, this is the first reported isolation of a marine bacterium degrading high concentrations of alginate.

Enhancing the Alginate Degrading Activity of Streptomyces sp. Strain M3 Alginate Lyase by Mutation (Streptomyces sp. M3 알긴산분해효소의 돌연변이에 의한 활성증대)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.7-15
    • /
    • 2012
  • A polyguluronate-specific lyase from Streptomyces sp. strain M3 has been previously cloned and characterized. In this study, the M3 alginate lyase gene in the pColdI vector was mutated by site-directed mutagenesis and random mutagenesis to enhance the alginate degrading activity. Six mutants were obtained: Ser25Arg, Phe99Leu, Asp142Asn, Val163Ala, Lys191Glu, and Gly194Cys. Phe99Leu and Lys191Glu mutants completely lost their alginate lyase activity, whereas the alginate degrading activity of Gly194Cys mutant increased by nearly 10 fold. The 3-D protein structure of M3 alginate lyase, which was constructed using the Swiss-Model automodeler, was also compared to the crystal structure of another alginate lyase. A mutated glycine residue was positioned between Gly193 and Tyr195 of the C-terminal conserved sequence, YFKAGXYXQ. A phenylalanine residue (at position 99) and a glycine residue (at position 194) mutated in this study were distant from the active site, but the degrading activity was strongly affected by their mutation.

Isolation and Characteristics of Alginate-Degrading Methylobacterium sp. HJM27 (알긴산 분해 Methylobacterium sp. HJM27 균주의 분리 및 특성)

  • Kim, Ok-Ju;Lee, Dong-Geun;Lee, Sung-Mok;Lee, Suck-June;Do, Hyung-Joo;Park, Hye-Jin;Kim, Andre;Lee, Jae-Hwa;Ha, Jong-Myung
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.144-150
    • /
    • 2010
  • This study was aimed to screen bacteria of high alginate-degrading activity, to select the nitrogen source and concentration of NaCl and sodium alginate for the production of alginate-degrading enzyme, and to determine reaction conditions of enzyme. A novel alginate-degrading bacterium was isolated from abalone (Haliotis discus hannai) and named Methylobacterium sp. HJM27 by 16S rDNA sequence analysis. The optimum culture conditions for the production of alginate-degrading enzyme were 1.0% sodium alginate, 0.5% peptone, 0.3% yeast extract, 1.5% NaCl, $25^{\circ}C$ and 48 hours incubation time. The raw enzyme showed the highest activity at $25^{\circ}C$ and pH 9, and produced 1.217 g - reducing sugar per liter in 0.8% (w/v) sodium alginate for 30 minutes. Methylobacterium sp. HJM27 and its alginate-degrading enzyme would be useful for the production of bioenergy and biofunctional oligosaccharides from seaweed.

Screening and Cultivation Characteristics of Alginate Degrading Bacteria (알긴산 분해 미생물의 탐색 및 생육 특성)

  • Uo, Meung-Hee;Joo, Dong-Sik;Cho, Soon-Yeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.109-114
    • /
    • 2006
  • For the purpose of oligosaccharide production from alginate, the main component in cell walls of brown algae, the alginate degrading bacteria have been screened from the seaweeds and soil. Among the isolated 69 strains, one strain showing the highest degrading activity was selected and identified as Bacillus licheniformis strain. The adequate sodium alginate concentration for growing the Bacillus licheniformis was $2.0\%$. The effective nitrogen source is nutrient broth $(0.1\%)$, and optimum initial pH, NaCl concentration, temperature and incubation time to produce the alginate degrading enzyme were 7.5, $2\%,\;30{\pm}2^{\circ}C$, and 144 hrs, respectively.

Isolation of Alginate-Degrading Marine Bacteria and Characterization of Alginase (알긴산 분해 해양미생물의 분리 및 alginase 특성 평가)

  • 이재화;이은열
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.718-722
    • /
    • 2003
  • Various marine microorganisms were isolated from seaweed, and their alginate-degrading activities were investigated. An alginate-degrading bacteria, Vibrio sp. AEBL-211, showed highest level of alginase activity when cultured on a mineral salt medium containing 0.7%(w/v) sodium alginate as the sole carbon source. The intracellular alginase from AEBL-211 was partially purified by ion chromatography on DE 52-cellulose column and gel filteration on Sepacryl G-200 column, and showed guluronate-specific 1yase activity.

Seaweed Fermentation and Probiotic Properties of Lactic Acid Bacteria Isolated from Korean Traditional Foods (전통식품 유래 유산균의 해조류 발효 및 Probiotic 특성)

  • Kim, Jin-Hak;Park, La-Young;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1481-1487
    • /
    • 2016
  • Lactic acid bacteria showing alginate-degrading and cellulolytic activity were isolated and identified as a starter for seaweed fermentation. A total of 331 strains of lactic acid bacteria isolated from various Korean traditional foods, such as Kimchi, Jeotgal, and Makgeolli, were examined alginate-degrading and cellulolytic activity by the plate assay method. Six strains showed strong alginate-degrading and cellulolytic activity among the isolated 331 strains. Among these six strains, four strains (strain No. 162, 164, 192, and 196) showed probiotic properties (antimicrobial activity, tolerance to simulated gastric juice, artificial bile acid, and NaCl). No. 192 strain (Gram-positive cocci, catalase negative, and homofermentative) showed the best probiotic properties among selected strains and was identified as Enterococcus faecium by 16S rRNA sequencing. Strain No. 192 (E. faecium) showed the best growth and antioxidative activity during seaweed (sea mustard and sea tangle) fermentation for 72 h at $37^{\circ}C$ among the four selected strains.

Isolation of Marine Bacterium Decomposing Sea tangle (Laminaria japonica) to Single Cell Detritus (다시마(Laminaria japonica)를 single cell detritus로 분해하는 해양세균의 분리)

  • Yi, Kun-Wook;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.237-240
    • /
    • 2006
  • Seventy-one marine bacteria decomposing sea tangle (Laminaria japonica) into single cell detritus (SCD) were isolated from sea water, sea tangle, sea mustard (Undaria pinnatifida), sea urchin (Anthocidaris crassispina), star fish (Acanthaster planci), and turban cell (Batillus cornutus), among which 14 strains decreased cutting strength of sea tangle and had alginate-degrading activity. Marine bacterium No. 34 isolated from turban cell showed lowest cutting strength of sea tangle, strongest alginate-degrading activity, and produced high content of $5-10\;{\mu}m$ SCD from sea tangle. This strain was identified as Vibrio sp. based on morphological, physiological, and biochemical characteristics and named as Vibrio sp. YKW-34.

Characterization of Undaria pinnatifida Root Enzymatic Extracts Using Crude Enzyme from Shewanella oneidensis PKA 1008 and Its Anti-Inflammatory Effect

  • Xu, Xiaotong;Jeong, So-Mi;Lee, Ji-Eun;Kang, Woo-Sin;Ryu, Si-Hyeong;Kim, Kwangwook;Byun, Eui-Hong;Cho, Young-Je;Ahn, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.79-84
    • /
    • 2020
  • This study investigated the characterization and functionality of Undaria pinnatifida root (UPT) extracts, degraded using a crude enzyme from Shewanella oneidensis PKA1008. To obtain the optimum degrading conditions, the UPT was mixed with alginate degrading enzymes from S. oneidensis PKA 1008 and was incubated at 30℃ for 0, 3, 6, 12, 24, and 48 h. The alginate degrading ability of these enzymes was then evaluated by measuring the reducing sugar, viscosity, pH and chromaticity. Enzymatic extract at 24 h revealed the highest alginate degrading ability and the lowest pH value. As the incubation time increased, the lightness (L ) also decreased and was measured at its lowest value, 39.84, at 12 hours. The redness and yellowness increased gradually to 10.27 at 6 h and to 63.95 at 3 h, respectively. Moreover, the alginate oligosaccharides exhibited significant anti-inflammatory activity. These results indicate that a crude enzyme from S. oneidensis PKA 1008 can be used to enhance the polysaccharide degradation of UPT and the alginate oligosaccharides may also enhance the anti-inflammatory effect.

Optimization of Conditions for the Production of Alginate-degrading Crude Enzyme from Vibrio crassostreae PKA 1002 (Vibrio crassostreae PKA 1002의 알긴산 분해 조효소 생산 최적 조건과 조효소의 특성)

  • SunWoo, Chan;Kim, Koth-Bong-Woo-Ri;Kim, Dong-Hyun;Jung, Seul-A;Kim, Hyun-Jee;Jeong, Da-Hyun;Jung, Hee-Ye;Lim, Sung-Mee;Hong, Yong-Ki;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • This study was conducted to screen an alginate-degrading microorganism and to investigate the characteristics of the alginate-degrading activity of its crude enzyme. A marine bacterium which produces extracellular alginate-degrading enzymes was isolated from the brown alga Sargassum thunbergii. 16S rRNA sequence analysis and physiological profiling resulted in the bacterium's identification as a Vibrio crassostreae strain, named Vibrio crassostreae PKA 1002. Its optimal culture conditions for growth were pH 9, 2% NaCl, $30^{\circ}C$ and a 24 hr incubation time. The optimal conditions for the alginate degrading ability of the crude enzyme produced by V. crassostreae PKA 1002 were pH 9, $30^{\circ}C$, a 48 hr incubation time and 8% alginic acid. The alginate degrading crude enzyme produced 3.035 g of reducing sugar per liter in 4% (w/v) alginate over 1 hr.