• Title/Summary/Keyword: algebra with bracket

Search Result 5, Processing Time 0.017 seconds

POISSON BRACKETS DETERMINED BY JACOBIANS

  • Ahn, Jaehyun;Oh, Sei-Qwon;Park, Sujin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.357-365
    • /
    • 2013
  • Fix $n-2$ elements $h_1,{\cdots},h_{n-2}$ of the quotient field B of the polynomial algebra $\mathbb{C}[x_1,x_2,{\cdots},x_n]$. It is proved that B is a Poisson algebra with Poisson bracket defined by $\{f,g\}=det(Jac(f,g,h_1,{\cdots},h_{n-2})$ for any $f,g{\in}B$, where det(Jac) is the determinant of a Jacobian matrix.

DUALITY OF CO-POISSON HOPF ALGEBRAS

  • Oh, Sei-Qwon;Park, Hyung-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Let A be a co-Poisson Hopf algebra with Poisson co-bracket $\delta$. Here it is shown that the Hopf dual $A^{\circ}$ is a Poisson Hopf algebra with Poisson bracket {f, g}(x) = < $\delta(x)$, $f\;{\otimes}\;g$ > for any f, g $\in$ $A^{\circ}$ and x $\in$ A if A is an almost normalizing extension over the ground field. Moreover we get, as a corollary, the fact that the Hopf dual of the universal enveloping algebra U(g) for a finite dimensional Lie bialgebra g is a Poisson Hopf algebra.

LIE BIALGEBRA ARISING FROM POISSON BIALGEBRA U(sp4)

  • Oh, Sei-Qwon;Hyun, Sun-Hwa
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.57-60
    • /
    • 2008
  • Let $U(sp_4)$ be the universal enveloping algebra of the symplectic Lie algebra $sp_4$. Then the restricted dual $U(sp_4)^{\circ}$ becomes a Poisson Hopf algebra with the Sklyanin Poisson bracket determined by the standard classical r-matrix. Here we illustrate a method to obtain the Lie bialgebra from a Poisson bialgebra $U(sp_4)^{\circ}$.

  • PDF

HYPOELLIPTICITY OF SYSTEMS OF ANALYTIC VECTOR FIELDS

  • Kwon, K.H.;Song, B.C.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.43-46
    • /
    • 1989
  • In this paper, we are concerned with the pointwise-hypoellipticity (see Definition 2.1) of an m-dimensional Frobenious Lie algebra L of analytic complex vector fields in somel open subset .ohm. of $R^{m+1}$. That is, L is a set of complex vector fields in .ohm. with (real-) analytic coefficients satisfying: (A) each point of .ohm. has an open neighborhood in which L is generated by m linearly independent elements of L; (B) L is closed under the commutation bracket [A, B]. The pointwise-analytic hypoellipticity of L is completely characterized by M.S. Baouendi and F. Treves in [1]. Here, we shall prove that if L is hypoelliptic at a point then it must be analytic hypoelliptic in a full neighborhood of the same point. When the coefficients are $C^{\infty}$, hypoellipticity of L was discussed in [2].2].

  • PDF