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ON SOLVABILITY AND NILPOTENCY OF ALGEBRAS

WITH BRACKET

Jose Manuel Casas

Dedicated to Manuel Ladra on occasion of his 60th birthday

Abstract. We analyze properties of solvable and nilpotent algebras with
bracket. The class of solvability and nilpotency of the tensor square of
an algebra with bracket is obtained. Homological characterizations of
nilpotent algebras with bracket are presented.

1. Introduction

Algebras with bracket were introduced in [9] as a generalization of Poisson
algebras where the dot operation is associative, but not necessarily commu-
tative, and the bracket operation does not satisfy any condition, except the
distribution Poisson law (1). Since the seminal paper [9], several algebraic
properties of this structure, in particular the homological ones, were analyzed
in different articles [6, 7, 8].

The goal of the present article is to continue with the study of the algebras
with bracket structure, in particular solvability and nilpotency properties. To
do so, we organize the paper as follows: in Section 2 we recall from [6, 9] some
basic notions needed in the forthcoming sections and we classify 2-dimensional
AWB in Example 2.1 ix). In Section 3 we study solvable algebras with bracket
by means of derived sequences and we introduce the notion of right represen-
tation M over an algebra with bracket A. Then we construct AWB(f), the
algebra with bracket structure over M associated to a homomorphism of right
A-representations f : M → A. When this homomorphism satisfies the property
f(M) ⊆ A

(j) and A is solvable of class k, then AWB(f) is solvable of class
k − j + 1. This result allow us to establish the solvability class of A⊗2 and
A⊗2 ⊕ A⊗2 for particular algebras with bracket A. In Section 4 we analyze
nilpotent algebras with bracket in terms of lower and upper central series and
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by means of the normalizer condition. The class of nilpotency corresponding
to A⊗2 is obtained. Finally, Section 5 is devoted to obtain homological char-
acterizations of nilpotent algebras with bracket, in particular by means of the
Schur c-multiplier of an algebra with bracket.

2. Preliminaries on algebras with bracket

We fix a field K. All vector spaces are taken over K. In what follows Hom
and ⊗ means HomK and ⊗K respectively.

Definition ([9]). An algebra with bracket or simply an AWB is an associative
(not necessarily commutative) algebra A equipped with a bilinear map [−,−] :
A⊗ A → A, (a⊗ b) 7→ [a, b] satisfying the following relation:

(1) [a · b, c] = [a, c] · b + a · [b, c]
for all a, b, c ∈ A.

We denote by AWB the category whose objects are algebras with bracket and
whose morphisms are K-linear maps preserving the · and [−,−] operations. It
is a routine task to check that AWB is a semi-abelian category [5], so classical
results as Five Lemma, 3 × 3 Lemma and the Second Noether Isomorphism
Theorem hold for AWB.

Example 2.1.

i) It is clear that any Poisson algebra is an AWB. In fact, the category
Poiss of commutative Poisson algebras is a subcategory of AWB. The
inclusion functor Poiss →֒ AWB has as left adjoint the functor given
by A 7→ APoiss, where APoiss is the maximal quotient of A, such that
the following relations hold: a · b − b · a ∼ 0, [a, a] ∼ 0 and [a, [b, c]] +
[b, [c, a]] + [c, [a, b]] ∼ 0.

ii) Let A be an associative K-algebra equipped with a linear application
D : A → A. Then A is an AWB with respect to the bracket [a, b] :=
aD(b)−D(b)a.

For D = 0 one obtains an AWB, which has the trivial bracket. The
more interesting is the case when D = Id, then A is an AWB with
respect to the usual bracket for associative algebras. This particular
AWB is said to be the tautological AWB associated to an associative
algebra A.

iii) Another example comes from dendriform algebras (see [18]). If A is a
dendriform algebra, then (A, ⋆, [−,−]) is an AWB, where a ⋆ b = a ≺
b+ a ≻ b and [a, b] = a ⋆ b− b ⋆ a = a ≺ b+ a ≻ b− b ≺ a− b ≻ a.

iv) For examples coming from Physics we refer to [16].
v) Novikov algebras were firstly introduced in the study of Hamiltonian

operators concerning integrability of certain nonlinear partial differen-
tial equations (see [12]). They are algebras (A, ·) over a field of charac-
teristic zero satisfying the following identities:
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a) x · (y · z)− (x · y) · z = y · (x · z)− (y · x) · z
b) (x · y) · z = (x · z) · y
Novikov algebras satisfying the additional condition
c) (x · y) · z = z · (y · x)

can be endowed with an AWB structure by means of the operations
x ◦ y = x · y + y · x and [x, y] = x · y − y · x.

Let us observe that the ◦ operation endows A with an associative
algebra structure. Following example ii), a Novikov algebra satisfy-
ing the additional condition c) can be endowed with another AWB
structure, but the bracket operation is trivial since the ◦ operation is
commutative.

vi) Let A be an algebra with bracket, then the K-vector space A ⊗ A en-
dowed with the operations

(a1 ⊗ a2) · (b1 ⊗ b2) = (a1b1)⊗ (a2b2),

[a1 ⊗ a2, b1 ⊗ b2] = [a1, [b1, b2]]⊗ a2 + a1 ⊗ [a2, [b1, b2]]

for all ai, bi ∈ A, i = 1, 2, is an algebra with bracket.
vii) Let A be an algebra with bracket, then the K-vector space A ⊗ A en-

dowed with the operations

(a1 ⊗ a2) · (b1 ⊗ b2) = a1 ⊗ (a2(b1b2)),

[a1 ⊗ a2, b1 ⊗ b2] = a1 ⊗ [a2, b1 · b2] + [a1, b1 · b2]⊗ a2

for all ai, bi ∈ A, i = 1, 2, is an algebra with bracket.
viii) 1-dimensional algebras with bracket with basis {e} over a field K of

characteristic 0, up to isomorphism, are abelian (see below) AWB or
an element of the following non pairwise isomorphism classes:
a) e · e = 0, [e, e] = e,

b) e · e = e, [e, e] = 0.
ix) Having in mind the classification of 2-dimensional associative algebras

given in [20], 2-dimensional algebras with bracket with basis {e, f} over
the field of complex numbers C, up to isomorphism, are abelian AWB
(see below) or an element of the following non pairwise isomorphism
classes:
a)AWB

1
2: Dot operation is trivial together with any bracket operation.

b)AWB
2
2: Any dot associative operation together with a trivial bracket

operation.
c)AWB

3
2:

e · e = f ; [e, e] = α1e+ β1f ;
[e, f ] = α2e+ β2f ;
[f, e] = 2α1f ;
[f, f ] = 2α2f.
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d) AWB
4
2:

e · e = e; [e, f ] = β1f ;
e · f = f ; [f, e] = β2f ;

[f, f ] = β3f.

e) AWB
5
2:

e · e = e; [e, e] = β1f ;
f · e = f ; [e, f ] = β2f ;

[f, e] = β3f ;
[f, f ] = β4f.

f) AWB
6
2:

e · e = e; [f, e] = β1f ;
e · f = f ; [f, f ] = β2f ;
f · e = f.

Note that all non written operations are trivial.

The following notions for an algebra with bracket A are given in [6] and they
agree with the corresponding notions in semi-abelian categories. A subalgebra
I of A is a K-subspace which is closed under · and [−,−] operations, that is,
I · I ⊆ I and [I, I] ⊆ I. I is said to be a right (respectively, left) ideal if A · I ⊆ I,
[A, I] ⊆ I (respectively, I ·A ⊆ I , [I,A] ⊆ I). If I is both left and right ideal, then
it is said to be a two-sided ideal. In this case, the quotient A/I is endowed with
an AWB structure naturally induced from the operations on A.

Let I, J be two-sided ideals of A. The commutator ideal of I and J is the
two-sided ideal of I and J

[[I, J]] = 〈{i · j, j · i, [i, j], [j, i] | i ∈ I, j ∈ J}〉.
Obviously [[I, J]] ⊆ I

⋂

J. Observe that [[I, J]] is not a two-sided ideal of A,
except when I = A or J = A. In the particular case I = J = A, one obtains the
definition of derived algebra of A, i.e.,

[[A,A]] = 〈{a · b, [a, b] | a, b ∈ A}〉.
We define the center of an algebra with bracket A as the two-sided ideal

Z(A) = {a ∈ A | a · b = 0 = b · a, [a, b] = 0 = [b, a] for all b ∈ A}.
An abelian algebra with bracket A is an AWB with trivial · and [−,−] op-

erations, i.e., A · A = 0 = [A,A]. Hence an algebra with bracket A is abelian if
and only if A = Z(A).

3. Solvable algebras with bracket

Definition. Let I be a two-sided ideal of an algebra with bracket A. Assume
that there is a finite sequence Ii, 1 ≤ i ≤ k, of two-sided ideals of A such that

I = I0 ✂ I1 ✂ · · ·✂ Ik−1 ✂ Ik = A.
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This chain of two-sided ideals is said to be a series of length k from I to A. The
two-sided ideals Ii are said to be the terms of the series and the quotient Ii/Ii−1

the factors of the series. A series of A will mean a series from 0 to A. A series
is said to be central if all its factors are central, that is Ii · A ⊆ Ii−1,A · Ii ⊆
Ii−1, [Ii,A] ⊆ Ii−1, [A, Ii] ⊆ Ii−1, equivalently Ii/Ii−1 ⊆ Z(A/Ii−1). A series is
said to be abelian if Ii · Ii ⊆ Ii−1, [Ii, Ii] ⊆ Ii−1, that is, [[Ii/Ii−1, Ii/Ii−1]] = 0.

When the terms of a series are subalgebras instead of two-sided ideals of A,
then the series are said to be a sequence.

Definition. An algebra with bracket A is said to be solvable if it has an abelian
sequence. Let k be the minimal length of such series, then k is said to be the
class of solvability of A.

We shall now show that among all the abelian sequences of a solvable AWB
there is one which descends most rapidly.

Definition. The sequence of subalgebras of A defined recursively by

A
(0) = A; A

(i) = [[A(i−1),A(i−1)]], i ≥ 1

is said to be the derived sequence of the algebra with bracket A.

Remark 3.1. Let us observe that A(i) is a two-sided ideal of A(i−1), but is not
a two-sided ideal of A in general.

Theorem 3.2.

i) Let A be an algebra with bracket and let I = I0 ✂ I1 ✂ · · ·✂ Ij−1 ✂ Ij = A

be an abelian sequence of A, then A(i) ⊆ Ij−i, 0 ≤ i ≤ j.

ii) An algebra with bracket A is solvable with class of solvability k if and

only if A(k) = 0 and A(k−1) 6= 0.

Proof. i) This is a routine checking by using induction on i.
ii) If A(k) = 0 and A(k−1) 6= 0, then 0 = A(k) ✂A(k−1) ✂ · · ·✂A(1) ✂A(0) = A

is an abelian sequence and by i) its length is minimal. Therefore A is a solvable
algebra with bracket of class k. The converse statement is a direct consequence
of i). �

Abelian algebras with bracket are solvable algebras with bracket. The 2-
dimensional tautological algebra with bracket with basis {e, f} and operations
e · e = f and trivial bracket (see Example 2.1 ii)), is a solvable algebra with
bracket of class 2. Algebras with bracket of the class AWB

4
2 in Example 2.1

ix) are non-solvable. Subalgebras and images by homomorphisms of solvable
algebras with bracket are solvable algebras with bracket as well. If A/H is a
solvable algebra with bracket, where H is a solvable two-sided ideal of A, then
A is a solvable algebra with bracket as well. If H and K are solvable two-sided
ideals of an algebra with bracket A, then H ∩ K and H + K are solvable two-
sided ideals of A as well. The proof of the last three arguments use classical
arguments (see [13, 15]) and we omit it.
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Proposition 3.3. If H and K are solvable two-sided ideals of an algebra with

bracket A, then [[H,K]] is a solvable two-sided ideal of H or K.

Proof. [[H,K]] ⊆ H ∩ K and H ∩ K is a solvable two-sided ideal of H or K. �

Definition. Let A be an algebra with bracket. A K-vector space M is said
to be a right A-representation if M is a right module over A equipped with a
bilinear map

[−,−] : M× A → M
(m, a) 7→ [m, a],

satisfying the following identity

[m · a, b] = m · [a, b] + [m, b] · a
for all m ∈ M and a, b ∈ A.

Example 3.4.

i) Let A be an algebra with bracket, then M=A is a right A-representation,
where the operations · and [−,−] are the structural ones for A.

ii) Representations of algebras with bracket [9] are right A-representations.
iii) Let A be a tautological algebra with bracket associated to an associative

algebra A (see Example 2.1 ii)) and let M be a right A-module. If we put
[m, a] = m ·a−a ·m,m ∈ M, a ∈ A, then M is a right A-representation.

iv) Let A be an algebra with bracket, then the K-vector space A⊗2 is
endowed with a structure of right A-representation with respect the
actions

(a1 ⊗ a2) · a = a1 ⊗ (a2a),

[a1 ⊗ a2, a] = a1 ⊗ [a2, a] + [a1, a]⊗ a2

for all a1, a2, a ∈ A.

Definition. Let M and N be right A-representations. A linear application
f : M → N is said to be a homomorphism of right A-representations if the
following identities hold for any m ∈ M and a ∈ A:

f(m · a) = f(m) · a,
f [m, a] = [f(m), a].

Example 3.5. For an algebra with bracket A, consider the right A-representa-
tion A⊗2 given in Example 3.4 iv). Then the K-linear map f : A⊗2 → A given
by f(a1 ⊗ a2) = a1 · a2 is a homomorphism of right A-representations.

Let f : M → A be a homomorphism of right A-representations from M to
the structural representation of A, then the operations

m1 ·m2 := m1 · f(m2),

[m1,m2] := [m1, f(m2)],

define an algebra with bracket structure on M. We denote by AWB(f) this
particular algebra with bracket.
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One observes that AWB(f) is a non-commutative Leibniz-Poisson algebra
[7] if and only if the following relations hold for any m1,m2,m3 ∈ M:

[m1, [f(m2), f(m3)]]− [[m1, f(m2)], f(m3)] + [[m1, f(m3)], f(m2)] = 0.

On the other hand, AWB(f) is a Poisson algebra if in addition the following
relations hold for any m1,m2 ∈ M:

m1 · f(m2) = m2 · f(m1),

[m1, f(m2)] + [m2, f(m1)] = 0.

Remark 3.6. Observe that for an algebra with bracket A, the structure of
algebra with bracket AWB(f) provided by the homomorphism f : A⊗2 → A

given in Example 3.5 is nothing else that the structure of algebra with bracket
of A⊗2 given in Example 2.1 vii).

Proposition 3.7. Let f : M → A be a homomorphism of right A-representa-

tions with the property f(M) ⊂ A
(j) and A

(k) = 0, then AWB(f)(k−j+1) = 0. In
other words, if f(M) ⊂ A(j) and A is a solvable AWB of class k, then AWB(f)
is a solvable AWB of class k − j + 1.

Proof. f : AWB(f) → A is a homomorphism of algebras with bracket and
f(AWB(f)) ⊂ A(j), then f(AWB(f)(m)) ⊂ A(m+j). Hence f(AWB(f)(k−j)) ⊂
A(k) = 0.

By definition we have,

AWB(f)(k−j+1) = [[(AWB(f))(k−j), (AWB(f))(k−j)]]

= [[(AWB(f))(k−j), f(AWB(f))(k−j)]]

= 0. �

Corollary 3.8. Let A be a solvable algebra with bracket of class k, then the

algebra with bracket A⊗2 given in Example 2.1 vii) is solvable of class k.

Proof. In Proposition 3.7 take the homomorphism of right A-representations
f : A⊗2 → A given in Example 3.5; obviously f(A⊗2) ⊆ A(1). �

Example 3.9.

i) For an algebra with bracket A, consider two copies of the K-vector space
A⊗2 and take the K-vector space A⊗2 ⊕ A⊗2 ; in order to distinguish
the elements in every copy, we will denote a1 ⊗ a2 the elements in the
left hand side copy and a1 ◦a2 the elements in the right hand side copy.

The K-vector space A⊗2⊕A⊗2 is endowed with a right A-representa-
tion structure with respect to the actions

(2)

(a1 ◦ a2) · a = (a1a) ◦ a2 − a1 ⊗ [a, a2],

[a1 ◦ a2, a] = [a1, a] ◦ a2 + a1 ◦ [a2, a],
(a1 ⊗ a2) · a = a1 ⊗ (a2a),

[a1 ⊗ a2, a] = a1 ⊗ [a2, a] + [a1, a]⊗ a2,
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Then the linear map

(3) ϕ : A⊗2 ⊕ A
⊗2 → A

given by

ϕ(a1 ⊗ a2) = a1 · a2, ϕ(a1 ◦ a2) = [a1, a2]

is a homomorphism of right A-representations. If A is a solvable algebra
with bracket of class k, since ϕ(A⊗2 ⊕ A⊗2) ⊆ A(1), then AWB(ϕ) is a
solvable algebra with bracket of class k by Proposition 3.7.

ii) The tautological algebra with bracket corresponding to the class AWB
3
2

in Example 2.1 ix) (that is, αi = βi = 0, i = 1, 2) is a solvable AWB of
class 2. Consider the homomorphism of right A-representations given in
(3) by ϕ(e⊗e) = f and zero elsewhere, where the right A-representation
structure provided by (2) is (e◦e) ·e = f ◦e, (e◦f) ·e = f ◦f, (e⊗e) ·e =
e⊗ f, (f ⊗ e) · e = f ⊗ f . Since ϕ(A⊗2 ⊕A⊗2) ⊆ A(1) and A is solvable
of class 2, then AWB(ϕ) is solvable of class 2 by Proposition 3.7.

4. Nilpotent algebras with bracket

Definition. An algebra with bracket A is said to be nilpotent if it has a
central series. Let k be the length of that series, then k + 1 is called the class
of nilpotency of A.

We shall now show that among all the central series of a nilpotent AWB
there is one which descends most rapidly.

Definition. The sequence of two-sided ideals defined recursively by

A
[1] = A; A

[k] = [[A[k−1],A]], k ≥ 2

is said to be the lower central series of an algebra with bracket A.

Theorem 4.1.

i) An AWB A is nilpotent with class of nilpotency k if and only if A[k+1] =
0.

ii) Suppose that A is nilpotent. Then for any central series of A, say

0 = M0 ✂M1 ✂ · · ·✂Mk = A, A[i] ⊆ Mk−i+1, 1 ≤ i ≤ k + 1.

Proof. If A[k+1] = 0, then 0 = A[k+1] ✂ A[k] ✂ · · ·✂ A[2] ✂ A[1] = A is a central
series of A of length k.

Conversely, if A is nilpotent, say 0 = M0✂M1✂· · ·✂Mk = A is a central series
of A, then a straightforward induction shows that A[i] ⊆ Mk−i+1. Particularly,
A[k+1] ⊆ M0 = 0. Same argument proves the second statement. �

Definition. Let M be a two-sided ideal of an algebra with bracket A. The
two-sided ideal of A

CA(A,M) = {a ∈ A | a · a′, a′ · a, [a, a′], [a′, a] ∈ M for all a′ ∈ A}
is said to be the centralizer of A and M on A.
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If M = 0, then CA(A, 0) = Z(A).

Definition. We call upper central series of an algebra with bracket A to the
sequence of two-sided ideals defined recursively by

Z0(A) = 0; Zi(A) = CA(A,Zi−1(A)), i ≥ 1.

Let us observe that Z1(A) = Z(A) and that Zi(A) is a two-sided ideal of A.

Lemma 4.2. Let M and N be two-sided ideals of an algebra with bracket A. If

M · A ⊆ N,A ·M ⊆ N, [M,A] ⊆ N, [A,M] ⊆ N, then M ⊆ CA(A,N).

We shall now show that among all the central series of a nilpotent algebra
with bracket there is one which ascends most rapidly.

Proposition 4.3. For a central series of a nilpotent algebra with bracket A,

say 0 = M0 ✂M1 ✂ · · ·✂Mk = A, one has Mi ⊆ Zi(A), 0 ≤ i ≤ k.

Proof. The assertion is true for i = 0. Proceeding by induction on i, we assume
that it is true for i − 1, then using the centrality of the series and Lemma 4.2
we obtain that Mi ⊆ CA(A,Mi−1) ⊆ CA(A, Zi−1(A)) = Zi(A). �

Theorem 4.4. An algebra with bracket A is nilpotent with class of nilpotency

k if and only if Zk(A) = A and Zk−1(A) 6= A.

Proof. If A is a nilpotent algebra with bracket with class of nilpotency k, then
A = Mk ⊆ Zk(A) ⊆ A by Proposition 4.3. Moreover, in this case 0 = Z0(A) ✂
Z1(A)✂ · · ·✂Zk−1(A)✂ Zk(A) = A is a central series of length k of A. Hence
Zk−1(A) 6= A.

Conversely, if Zk(A) = A and Zk−1(A) 6= A, then 0 = Z0(A)✂Z1(A)✂ · · ·✂
Zk−1(A)✂Zk(A) = A is a central series of A and by Proposition 4.3 its length
is minimal. �

Abelian algebras with bracket are examples of nilpotent algebras with bracket.
Clearly A(1) = A[2] = [[A,A]] and A(n) ⊆ A[n], n ≥ 1, so nilpotent algebras
with bracket are solvable algebras with bracket. The tautological algebra with
bracket corresponding to the class AWB

3
2 in Example 2.1 ix), that is e·e = f and

trivial bracket (see Example 2.1 ii)), is a nilpotent algebra with bracket of class
2. The two-dimensional algebra with bracket with trivial product and bracket
operation given by [e, f ] = f , corresponding to the class AWB

1
2 in Example 2.1

ix), is a solvable of class 2, but non nilpotent algebra with bracket. Subalgebras
and images by homomorphisms of nilpotent algebras with bracket are nilpotent
algebras with bracket. If A/Z(A) is a nilpotent algebra with bracket, then A

is a nilpotent algebra with bracket. If A is a nilpotent and non trivial algebra
with bracket, then Z(A) 6= 0.

Example 4.5.

i) Let A be an abelian – so nilpotent – algebra with bracket, then A
⊗2

with respect to both structures given in Example 2.1 vi) (respectively,
Example 2.1 vii)) is abelian – so nilpotent – algebra with bracket.
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ii) Let A be the algebra with bracket in the class AWB
1
2 given in Example

2.1 ix), then A⊗2 with the structure given in Example 2.1 vii) is an
abelian algebra with bracket, hence is nilpotent.

Proposition 4.6. Let A be a nilpotent algebra with bracket of class ≤ k,

then the algebra with bracket A⊗2 with the structure given in Example 2.1 vi)
(respectively, Example 2.1 vii)) is nilpotent of class ≤ 2k.

Proof. With a straightforward induction and having in mind the structure given
in Example 2.1 vi) (respectively, Example 2.1 vii)), it is easy to check the
following inclusion

(A⊗2)[k] ⊆
k

∑

i=1

A
[k+1−i] ⊗ A

[i].

The statement is a direct consequence of this inclusion. �

Proposition 4.7.

i) Let H be a two-sided ideal of an algebra with bracket A such that H ⊆
Z(A). Then A is nilpotent if and only if A/H is nilpotent.

ii) Let f : A ։ B be a central extension (that is, Ker(f) ⊆ Z(A)) of an

algebra with bracket B. Then A is nilpotent if and only if B is nilpotent.

Proof. i) The quotient of nilpotent algebras with bracket is nilpotent as well.
Conversely, there exist k such that (A/H)[k] = 0, hence A[k] ⊆ H ⊆ Z(A), then
A[k+1] = 0.

ii) Direct consequence of i). �

Definition. The left normalizer of a subset H of an algebra with bracket A is
the set N l

A
(H) = {a ∈ A | a · h ∈ H; [a, h] ∈ H; for all h ∈ H}.

The right normalizer of a subset H of an algebra with bracket A is the set
N r

A
(H) = {a ∈ A | h · a ∈ H; [h, a] ∈ H; for all h ∈ H}.
The normalizer of H of an algebra with bracket A is NA(H) = N l

A
(H)∩N r

A
(H).

In general, NA(H), N
l
A
(H), N r

A
(H) are not subalgebras when H is a subset of

A, even when H is a subalgebra of A. If H is a subalgebra of A, then H ⊆ NA(H).

Definition. It is said that an algebra with bracket A satisfies the normalizer
condition if every proper subalgebra of A is properly contained in its normalizer.

Proposition 4.8. If A is a nilpotent algebra with bracket, then A satisfies the

normalizer condition.

Proof. Let K be a proper subalgebra of A. Let j ≥ 1 be the minimal integer
such that Zj(A) " K (there always exists such a j thanks to Theorem 4.4).
Then [[K, Zj(A)]] ⊆ [[A, Zj(A)]] ⊆ Zj−1(A) ⊆ K (by minimality of j). Thus
K ⊆ K+ Zj(A) ⊆ NA(K). �
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5. Homological characterization of nilpotency

Firstly we recall that the homology with trivial coefficients of an algebra
with bracket A can be computed through the following complex [9]:

Let V a K-vector space. Let be R1(V ) = V and Rn(V ) = V ⊗n ⊕ V ⊗n

for n ≥ 2. In order to distinguish elements from these tensor powers, we let
a1 ⊗ · · · ⊗ an be a typical element from the first component of Rn(V ), while
a1 ◦ · · · ◦ an from the second component of Rn(V ).

Let A be an AWB and consider K as a trivial representation over A, that
is, a · k = k · a = [a, k] = [k, a] = 0 for all a ∈ A, k ∈ K. Then we define the
complex

CAWB
n (A) := Rn+1(A), n ≥ 0

with boundary maps given by

dn(a1 ⊗ · · · ⊗ an) =
n−1
∑

i=1

(−1)i+1a1 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an

dn(a1 ◦ · · · ◦ an) =
n−1
∑

i=1

a1 ⊗ · · · ⊗ [ai, an]⊗ · · · ⊗ an−1

+
n−2
∑

i=1

(−1)ia1 ◦ · · · ◦ ai · ai+1 ◦ · · · ◦ an.

The homology of the complex (CAWB
n (A), dn) is said to be the homology

with trivial coefficients of the algebra with bracket A and we denote it by
H

AWB
n (A,K), n ≥ 0 or briefly H

AWB
n (A).

A direct computation on the complex (CAWB
n (A), d) shows that HAWB

0 (A) ∼=
A/[[A,A]] = Aab. Associated to an exact sequence 0 → H → B

π→ A → 0 of
AWB there exists [6, Theorem 2.13] the exact and natural five-term sequence

(4) H
AWB

1 (B) → H
AWB

1 (A)
θB→ H/[[H,B]] → H

AWB

0 (B) → H
AWB

0 (A) → 0.

Hence the following isomorphism holds

(5) H
AWB

1 (A) ∼= (R ∩ [[F,F]])/[[R,F]]

for a free presentation 0 → R → F
ρ→ A → 0 of the algebra with bracket A.

Definition. Let A be a nilpotent algebra with bracket of class n. An extension

0 → H → B
π→ A → 0 is said to be of class n if B is nilpotent of class n.

Theorem 5.1. A central extension 0 → H → B
π→ A → 0 is of class n if and

only if θB vanishes over Ker(τ), where τ : HAWB
1 (A) → HAWB

1 (A/A[n]) is induced
by the canonical projection A ։ A/A[n].
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Proof. Consider the following diagrams of free presentations:

0

��

0

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

0

��

0

{{①①
①①
①①
①①
①①

R

����⑦⑦
⑦⑦
⑦⑦
⑦

S

��}}④④
④④
④④
④④

0 // S //

��

F

ρ

��

π◦ρ

��
❂❂

❂❂
❂❂

❂❂
0 // T //

��

F

π◦ρ

��

pr◦π◦ρ

""❊
❊❊

❊❊
❊❊

❊

0 // H //

��

B
π

//

��

A //

��
❁❁

❁❁
❁❁

❁❁
0 0 // A[n] //

��

A
pr

//

��

A/A[n] //

""❉
❉❉

❉❉
❉❉

❉❉
0

0 0 0 0 0 0

then θB(x + [[S,F]]) = ρ(x) and Ker(τ) = [[T,F]]
[[S,F]] .

Assume that B is nilpotent of class n and consider x+[[S,F]] ∈ Ker(τ). Then
θB(x+[[S,F]]) = ρ(x) = 0 since ρ(x) ∈ [[ρ(T), ρ(F)]] ⊆ [[B[n]+H,B]] = B[n+1] =
0. For the last inclusion is necessary to have in mind that π ◦ ρ(T) ⊆ A

[n] =
π(B[n]) and consequently ρ(T) ⊆ B[n] + H.

Conversely, B[n+1] = [[B[n],B]] = [[ρ(F[n]), ρ(F)]] ⊆ ρ[[T,F]] = 0 since
[[T,F]] ⊆ R because θB vanishes over Ker(τ). For the last inclusion is nec-
essary to have in mind that π ◦ ρ(F[n]) ⊆ A

[n], hence F
[n] ⊆ T. �

Definition. Let H be a two-sided ideal of an algebra with bracket A. We call
lower central series determined by H to the sequence of two-sided ideals defined
inductively by

γ1(H,A) = H; γk+1(H,A) = [[γk(H,A),A]], k ≥ 1.

Obviously, if H = A, then γk(A,A) = A[k], denoted as γk(A) for short. On
the other hand, γk+1(H,A) ✂ γk(H,A) and γk+1(H,A)/γk(H,A) is an abelian
algebra with bracket. If ϕ : A → B is a homomorphism of algebras with bracket
such that ϕ(H) ⊆ K, where H is a two-sided ideal of A and K a two-sided ideal
of B, then ϕ(γk(H,A)) ⊆ γk(K,A), k ≥ 1.

Theorem 5.2. Let ϕ : A → B be a homomorphism of algebras with bracket

such that ϕ(H) ⊆ K, where H is a two-sided ideal of A and K a two-sided ideal

of B, and the following conditions hold:

i) ϕ : HAWB
0 (A) → HAWB

0 (B) is an isomorphism.

ii) ϕ : HAWB
1

(A) → HAWB
1

(B) is an epimorphism.

iii) ϕ̄ : A/H → B/K is an isomorphism.

Then ϕk : A/γk(H) → B/γk(K), k ≥ 1, is an isomorphism.
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Proof. By induction on k. For k = 1 we use condition iii). For k ≥ 2 we apply
sequence (4), which is natural, to the following commutative diagram

0 // γk−1(H) //

��

A //

ϕ

��

A/γk−1(H) //

≀ϕk−1

��

0

0 // γk−1(K) // B // B/γk−1(K) // 0

and we get the following commutative diagram:

HAWB
1 (A) //

��

HAWB
1 ( A

γk−1(H))
//

��

γk−1(H)
[[γk−1(H),A]]

//

��

HAWB
0 (A) //

��

HAWB
0 ( A

γk−1(H))
//

��

0

HAWB
1

(B) // HAWB
1

( B

γk−1(K)
) // γk−1(K)

[[γk−1(K),B]]
// HAWB

0
(B) // HAWB

0
( B

γk−1(K)
) // 0

By the Five Lemma, which holds in a semi-abelian category [4, 19], we get
γk−1(H)

[[γk−1(H),A]]
∼= γk−1(K)

[[γk−1(K),B]]
, i.e., γk−1(H)

γk(H)
∼= γk−1(K)

γk(K)
.

Then the Short Five Lemma applied to the following commutative diagram

0 // γk−1(H)
γk(H)

//

��

A

γk(H)
//

��

A

γk−1(H)
//

��

0

0 // γk−1(K)
γk(K)

// B

γk(K)
// B

γk−1(K)
// 0

and the induction complete the proof. �

Corollary 5.3. Let ϕ : A → B be a homomorphism of algebras with bracket

such that ϕab : Aab → Bab is an isomorphism and ϕ̄ : HAWB
1

(A) → HAWB
1

(B) is

an epimorphism. If A and B are nilpotent algebras with bracket, then ϕ is an

isomorphism.

Proof. Take H = A and K = B in Theorem 5.2. The assertion follows keeping
in mind that HAWB

0
(A) ∼= Aab and there exists k ≥ 1 such that γk(A) = γk(B) =

0. �

Corollary 5.4. Let A be a nilpotent algebra with bracket such that the canon-

ical epimorphism A → APoiss (see Example 2.1 i)) induces an epimorphism

HAWB
1 (A) → HAWB

1 (APoiss), then A ∼= APoiss, that is, the unique nilpotent alge-

bras with bracket whose Poissonization is nilpotent are the Poisson algebras.

Proof. Apply Corollary 5.3 to the canonical epimorphism A → APoiss. �

Lemma 5.5. Let H be a two-sided ideal of an algebra with bracket A. The

lower central series determined by H vanishes if and only if there exists i ≥ 0
such that H ⊆ Zi(A).
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Proof. It is enough to use the following obvious equivalence:

γi(H,A) ⊆ Zk(A) ⇔ γi+1(H,A) ⊆ Zk−1(A) �

Theorem 5.6. Let H ⊆ Zi(A) and K ⊆ Zj(B) be, i, j ≥ 0. Let ϕ : A → B be a

homomorphism of algebras with bracket such that ϕ(H) ⊆ K and the following

conditions hold:

i) ϕ : HAWB
0

(A) → HAWB
0

(B) is an isomorphism.

ii) ϕ : HAWB
1

(A) → HAWB
1

(B) is an epimorphism.

iii) ϕ̄ : A/H → B/K is an isomorphism.

then ϕ : A → B is an isomorphism.

Proof. Apply Theorem 5.2 and Lemma 5.5. �

Corollary 5.7. Let ϕ : A → B be a homomorphism of algebras with bracket

such that ϕ(Zi(A)) ⊆ Zi(B) for any i ≥ 0 and the following conditions hold:

i) The induced homomorphism ϕ : HAWB
0 (A) → HAWB

0 (B) is an isomor-

phism.

ii) The induced homomorphism ϕ : HAWB
1

(A) → HAWB
1

(B) is an epimor-

phism.

iii) ϕ̄ : A/Zi(A) → B/Zi(B) is an isomorphism.

then ϕ : A → B is an isomorphism.

Proof. Apply Theorem 5.6 to the case H = Zi(A) and K = Zi(B). �

From now on, we consider the free presentation 0 → R → F
ρ→ A → 0 of the

algebra with bracket A. Then the c-nilpotent multiplier of A, c ≥ 0, is defined
to be the abelian AWB

M(c)(A) :=
R ∩ γc+1(F)

γc+1(R,F)
.

From (5), we have M(1)(A) ∼= HAWB
1 (A).

Since AWB is a category of Ω-groups, but not a category of interest (see [8]),
and following Proposition 4.3.2 in [14] we can conclude that the collection of
all nilpotent objects of class ≤ k in AWB form a variety. Now following [1, 2, 3,
11, 17] can be showed that M(c)(A) is a Baer-invariant, which means that its
definition does not depend on the choice of the free presentation. Furthermore,

from [10] can be derived that γ∗
c+1(A) =

γc+1(F)
γc+1(R,F)

is also a Baer-invariant.

Proposition 5.8. Let A ∈ AWB and c ≥ 1. Then

i) γ∗
c+1(A) = 0 if and only if A is nilpotent of class c and M(c)(A) = 0.

ii) If γ∗
c+1(A) = 0, then γ∗

c+1(A/K) = 0 for any two-sided ideal K of A.

Proof. i) γ∗
c+1(A) = 0 implies that γc+1(F) ⊆ γc+1(F,R), thus

A
[c+1] = [[γc(A),A]] = γc+1(F)/R ⊆ γc+1(F,R)/R ⊆ 0.

Moreover M(c)(A) = R∩γc+1(F)
γc+1(F,R)

⊆ R∩γc+1(F,R)
γc+1(F,R)

= 0.
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Conversely, is M(c)(A) = 0, then R ∩ γc+1(F) ⊆ γc+1(F,R), since A[c+1] = 0
implies that γc+1(F)/R = 0, thus γc+1(F) ⊆ R. Hence γc+1(F) ⊆ γc+1(F,R)
and, consequently, γ∗

c+1(A) = 0.
ii) Let K be a two-sided ideal of A and consider the free presentation 0 →

S → F
τ◦ρ→ A/K → 0, where τ : A → A/K is the canonical projection. Since

R ⊆ S, then γ∗
c+1(A) = 0 implies that γc+1(F) ⊆ γc+1(F,R) ⊆ γc+1(F, S) which

ends the proof. �
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