• Title/Summary/Keyword: algebra

Search Result 1,784, Processing Time 0.026 seconds

Generation of Finite Fuzzy Algebra and Finite De Morgan Algebra Using a Computer

  • Tastumi, Hisayuki;Araki, Tomoyuki;Mukaidono, Masao;Tokumasu, Shinji
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.531-536
    • /
    • 1998
  • It is well known that a Boolean algebra is one of the most important algebra for engineering. A fuzzy algebra, which is referred to also as a Kleen algebra, is obtained from a Boolean algebra by replacing the complementary law in the axioms of a Bloolean algebra with the Kleen's law, where the Kleen's law is a weaker condition than the complementary law. Removal of the Kleen's law from a Kleen algebra gives a De Morgan algebra. In this paper, we generate lattice structures of the above related algebraic systems having finite elements by using a computer. From the result, we could find out a hypothesis that the structure excepting for each element name between a Kleene algebra and a De Morgan algebra is the same from the lattice standpoint.

  • PDF

ALMOST HOMOMORPHISMS BETWEEN BANACH ALGEBRAS

  • Lee, Sung Jin;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • It is shown that for an almost algebra homomorphism between Banach algebras, there exists a unique algebra homomorphism near the almost algebra homomorphism. Moreover, we prove that for an almost algebra ${\ast}$-homomorphism between $C^{\ast}$-algebras, there exists a unique algebra ${\ast}$-homomorphism near the almost algebra ${\ast}$-homomorphism, and that for an almost algebra ${\ast}$-homomorphism between $JB^{\ast}$-algebras, there exists a unique algebra ${\ast}$-homomorphism near the almost algebra ${\ast}$-homomorphism.

HEYTING ALGEBRA AND t-ALGEBRA

  • Yon, Yong Ho;Choi, Eun Ai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.13-26
    • /
    • 1998
  • The purpose of this note is to study the relation between Heyting algebra and t-algebra which is the dual concept of BCK-algebra. We define t-algebra with binary operation ${\rhd}$ which is a generalization of the implication in the Heyting algebra, and define a bounded ness and commutativity of it, and then characterize a Heyting algebra and a Boolean algebra as a bounded commutative t-algebra X satisfying $x=(x{\rhd}y){\rhd}x$ for all $x,y{\in}X$.

  • PDF

On BN-algebras

  • Kim, Chang Bum;Kim, Hee Sik
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.2
    • /
    • pp.175-184
    • /
    • 2013
  • In this paper, we introduce a BN-algebra, and we prove that a BN-algebra is 0-commutative, and an algebra X is a BN-algebra if and only if it is a 0-commutative BF-algebra. And we introduce a quotient BN-algebra, and we investigate some relations between BN-algebras and several algebras.

CHARACTERIZATIONS OF BIHOM-ALTERNATIVE(-LEIBNIZ) ALGEBRAS THROUGH ASSOCIATED BIHOM-AKIVIS ALGEBRAS

  • Sylvain Attan
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.425-438
    • /
    • 2024
  • BiHom-Akivis algebras are introduced. It is shown that BiHom-Akivis algebras can be obtained either from Akivis algebras by twisting along two algebra morphisms or from a regular BiHom-algebra via the BiHom-commutator-BiHom-associator algebra. It is also proved that a BiHom-Akivis algebra associated to a regular BiHom-alternative algebra is a BiHom-Malcev algebra. Using the BiHom-Akivis algebra associated to a given regular BiHom-Leibniz algebra, a necessary and sufficient condition for BiHom-Lie admissibility of BiHom-Leibniz algebras is obtained.

ON SOME SCHUR ALGEBRAS

  • Choi, Eun-Mi;Lee, Hei-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • A Schur algebra was generalized to projective Schur algebra by admitting twisted group algebra. A Schur algebra is a projective Schur algebra with trivial 2-cocycle. In this paper we study situations that Schur algebra is a projective Schur algebra with nontrivial cocycle, and we find a criterion for a projective Schur algebra to be a Schur algebra.

CONSTRUCTION OF AN HV-BE-ALGEBRA FROM A BE-ALGEBRA BASED ON "BEGINS LEMMA"

  • Naghibi, R.;Anvariyeh, S.M.;Mirvakili, S.
    • The Pure and Applied Mathematics
    • /
    • v.28 no.3
    • /
    • pp.217-234
    • /
    • 2021
  • In this paper, first we introduce the new class of HV-BE-algebra as a generalization of a (hyper) BE-algebra and prove some basic results and present several examples. Then, we construct the HV-BE-algebra associated to a BE-algebra (namely BL-BE-algebra) based on "Begins lemma" and investigate it.

ON MALCEV ALGEBRA BUNDLES

  • HOWIDA ADEL ALFRAN;K. KAMALAKSHI;R. RAJENDRA;P. SIVA KOTA REDDY
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • In this paper, we study Malcev algebra bundles and Malcev algebra bundles of finite type. Lie algebra bundles and Lie transformation algebra bundles are defined using given Malcev algebra bundle and we conclude some results for finite type.

ON HOPF ALGEBRAS IN ENTROPIC JÓNSSON-TARSKI VARIETIES

  • ROMANOWSKA, ANNA B.;SMITH, JONATHAN D.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1587-1606
    • /
    • 2015
  • Comonoid, bi-algebra, and Hopf algebra structures are studied within the universal-algebraic context of entropic varieties. Attention focuses on the behavior of setlike and primitive elements. It is shown that entropic $J{\acute{o}}nsson$-Tarski varieties provide a natural universal-algebraic setting for primitive elements and group quantum couples (generalizations of the group quantum double). Here, the set of primitive elements of a Hopf algebra forms a Lie algebra, and the tensor algebra on any algebra is a bi-algebra. If the tensor algebra is a Hopf algebra, then the underlying $J{\acute{o}}nsson$-Tarski monoid of the generating algebra is cancellative. The problem of determining when the $J{\acute{o}}nsson$-Tarski monoid forms a group is open.

TOWARDS UNIQUENESS OF MPR, THE MALVENUTO-POITIER-REUTENAUER HOPF ALGEBRA OF PERMUTATIONS

  • Hazewinkel, Michiel
    • Honam Mathematical Journal
    • /
    • v.29 no.2
    • /
    • pp.119-192
    • /
    • 2007
  • A very important Hopf algebra is the graded Hopf algebra Symm of symmetric functions. It can be characterized as the unique graded positive selfdual Hopf algebra with orthonormal graded distinguished basis and just one primitive element from the distinguished basis. This result is due to Andrei Zelevinsky. A noncommutative graded Hopf algebra of this type cannot exist. But there is a most important positive graded Hopf algebra with distinguished basis that is noncommutative and that is twisted selfdual, the Malvenuto-Poirier-Reutenauer Hopf algebra of permutations. Thus the question arises whether there is a corresponding uniqueness theorem for MPR. This prepreprint records initial investigations in this direction and proves that uniquenees holds up to and including the degree 4 which has rank 24.