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CONSTRUCTION OF AN HV-BE-ALGEBRA FROM
A BE-ALGEBRA BASED ON “BEGINS LEMMA”

R. NacHIBI?®, S. M. ANVARIYEH”* AND S. MIRVAKILI®

ABSTRACT. In this paper, first we introduce the new class of HV-BE-algebra as
a generalization of a (hyper) BE-algebra and prove some basic results and present
several examples. Then, we construct the HV-BE-algebra associated to a BE-algebra
(namely BL-BE-algebra) based on “Begins lemma” and investigate it.

1. INTRODUCTION

The class of BCK-algebras was introduced in 1978 by Y. Imai and K. Iseki [17].
Then in 1998, Y. B. Jun et al. [18] introduced a new notion, called a BH-algebra,
which is a generalization of a BCK-algebra, i.e., zxx = 0; zx0 = z and xxy = 0 and
yxx =0 imply x = y for any z,y € X. In 1999, J. Neggers et al. [22] introduced
the notion of a d-algebra which is another generalization of a BCK-algebra. Also,
in 2007, H. S. Kim and Y. H. Kim [20] introduced the notion of a BE-algebra, as a
generalization of a BCK-algebra, and using the notion of a upper set they gave an
equivalent condition of a filter in a BE-algebra.

In 2012 and 2013, A. Rezaei et al. [30, 31] studied commutative ideals in BE-
algebras and gave some properties. Also, they showed a commutative implicative
BE-algebra is equivalent to a commutative self distributive BE-algebra. Moreover,
they proved every Hilbert algebra is a self distributive BE-algebra and a commutative
self distributive BE-algebra is a Hilbert algebra and showed one can not remove the
conditions of commutativity and self distributivity. In [1], S. S. Ahn et al. introduced

the notion of a terminal section of a BE-algebra and gave some characterization of
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a commutative BE-algebra in terms of lattice order relations and terminal sections.
Recently, R. A. Borzooei et al. introduced the notion of a pseudo BE-algebra which
is a generalization of a BE-algebra. They defined the basic concepts of a pseudo
subalgebra and a pseudo filter and proved that under some conditions, a pseudo
subalgebra can be a pseudo filter [2].

The algebraic hyperstructure theory as a generalization of the algebraic structure
was first introduced in 1934, by French mathematician F. Marty at the 8th congress
of Scandinavian mathematicians [21]. A hypergroupoid is a non-empty set H with a
hyperoperation o defined on H, that is, a mapping of H x H into the family of non-
empty subsets of H. If (z,y) € H x H, its image under o is denoted by zoy. If A, B
are non-empty subsets of H then Ao B is given by Ao B = |J{zoy |z € A, y € B}.

A hypergroupoid (H, o) is called a semihypergroup if ao (boc) = (aob)oc for all
a,b,c € H and it is called a hypergroup if it is a semihypergroup and aoH = Hoa = H
for all @ € H. For instance, if z oy = {z,y} for all z,y € H, then (H,o) is
a hypergroup. Afterward, because of many applications of this theory in applied
sciences, many authors study in this context. Some reviews of the hyperstructure
theory can be found in [6, 8, 38]. Corsini’s book on hyperstructures [4] points out
their applications in fuzzy and rough set theory, cryptography, codes, automata,
probability, geometry, lattices, binary relations, graphs and hypergraphs. In [19],
Y. B. Jun et al. applied the hyperstructure to a BCK-algebra and introduced the
notion of a hyper BCK-algebra which is a generalization of the BCK-algebra and
investigated some related properties. A. Radfar et al. defined the notion of a
hyper BE-algebra, some types of hyper filters in this structure and described the
relationship between them [29].

An HV-structure as a generalization of the hyperstructure was first introduced
by Vougiouklis at the Forth AHA congress in 1990 [39]. There are some important
reasons for introducing and investigation of so called HV-structures, that is an HV-
group, an HV-ring, and so on, which are defined from the well known classes of
hyperstructures in a certain simple way. The idea consists in replacing some axioms,
such as the associative law, the distributive law, and others by the corresponding
weak ones. The hyperstructure (H, o) is called an HV-semigroup if ao (boc)N (ao
b)oc # ¢ for all a,b,c € H. The hyperstructure (H,o) is called an HV-group if
(H,o) is an HV-semigroup and ao H = Hoa = H for all a € H. Since a quotient of
an HV-structure with respect to a fundamental equivalence relation (8*,v*, €*, ets.)

is always an ordinary structure and this is why it is called an HV-structure. Many
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authors have published papers relating different “HV-structures”. In particular,
a variety of HV-structures theory have been defined such as: partial abelian HV-
monoids [9], HV-semigroups [33], HV-groups [34], HV-rings [35], HV-modules [10]
and HV-vector spaces [37]. In [7] Davvaz surveyed the theory of HV-structures.

The relation of ordered sets and algebraic hyperstructures was first studied by
Vougiouklis in 1987 [36]. Then the connection between hyperstructures and ordered
sets has been analyzed by many researchers such as Corsini [5], Omidi and Davvaz
[28] Hoskova [16], Heidari and Davvaz [14], and others. One special aspect of this
issue, known as EL-hyperstructures, which was first introduced by Chavlina in [3]
are hypercompositional structures constructed from a partially (semi)group using
a construction known as Ending lemma or Ends lemma. Lots of papers regarding
this topic have been written by number of authors like Hoskova [15, 16], Novak
[23, 26, 27], Rosenberg [32], and others [11, 12, 13]. Among them, Novak in [23]
studied subhyperstructures of EL-hyperstructures and in [24] he discussed some
interesting results of important elements in this family of hyperstructures. Then,
in [24] Novak studied some basic properties of EL-hyperstructures like invertibility,
normality, property of being closed and ultra closed, regularity, and etc. Now, there
arises a natural question that “Is it possible to go further to stronger hyperstructure
like BE-algebras, B-algebras, etc?”

In this paper, first we define the concept of an HV-BE-algebra and prove some
basic results, then we apply “Ends lemma” on a BE-algebra and achieve the new
HV-BE-algebra associated to it.

2. BASIC DEFINITIONS AND RESULTS

The notion of a BE-algebra, as a generalization of a BCK-algebra, was introduced
by H. S. Kim and Y. H. Kim [20]. The aim of this section is to introduce an HV-
BE-algebra, give some examples, and find some of their properties. Let X be a
nonempty set, * : X x X — X be a binary operation and “1” be constant. The
triple (X, *,1) is called a BE-algebra if for all z € X we have xxx =1, z+%1 =1 and
1xx = x, where a relation “<” is defined by z < y if and only if z*xy = 1 and for all
z,y,z € X, we have x x (y % z) = y x (x * z). A nonempty subset Y of a BE-algebra
(X, *,1) is said to be a BE-subalgebra of X, if 1l € Y and zxy €Y, forall z,y € Y.
A BE-algebra (X, *,1) is said to be commutative, if (x xy) *y = (y x x) * x for any
z,y € X [20].
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Definition 2.1 ([29]). Let H be a nonempty set, o : H x H — ©*(H) be a hyper-
operation and “1” be constant. The triple (H,o,1) is called a hyper BE-algebra if
for all x,y,z € H wehave x <1,z <z,zo0(yoz)=yo(roz),xr € lorzand 1<z
implies x = 1, where the relation “<” is defined by x < y if and only if 1 € zoy. For
any two nonempty subsets X and Y of H, X <Y if and only if there exist x € X
and y € Y such that < y. A nonempty subset S of a hyper BE-algebra H is said
to be a hyper BE-subalgebra of H,if 1 € S and x oy C S, for all z,y € S.

Example 1. Let H = {1,a,b} be a set with the following table:

1 a b

{1} | {a,b} | {b}
{1} | {L,a} {10}
{1} [ {1,a,0} | {1}

Then it follows that (H,o,1) is a hyper BE-algebra.

S| 0

Example 2. It is obvious that {1} and H are hyper BE-subalgebras of a hyper
BE-algebra of H. In Example 1, {1,a} is not a hyper BE-subalgebra of the hyper
BE-algebra (H,o,1). Also, {1} and {1,b} are hyper BE-subalgebras of the hyper
BE-algebra (H,o,1).

Definition 2.2. (H,o,1) is called an HV-BE-algebra, if it satisfies the following
axioms:

(HVBEL) z <1, z < z,

(HVBE2) zo (yoz)Nyo (zoz)# ¢,

(HVBE3) z € 1 oz,

(HVBE4) 1 < z implies z = 1, for all z,y,z € H,

where the relation “<” is defined by = < y if and only if 1 € x oy. For any two
nonempty subsets X and Y of H, X <Y if and only if there exist t € X andy € Y
such that z < y. An HV-BE-algebra (H,o, 1) is said to be commutative if

(oy)oyN(yox)ox # ¢
for all x,y € H.
It is obvious that a hyper BE-algebra is an HV-BE-algebra.

[P

Example 3. Let H = {1,a,b,c} and define a hyperoperation “o” as follows:
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1 a b c
{1} [{a} | {0} | {c}
{17 [ {1} [ {b,c} | {b,c}
{1 [ {1 ] {1} | {c}
] {1} | {1}

Q||| 0

Then by examining the HV-BE-algebra’s properties we conclude that (H,o,1) is an
HV-BE-algebra. Since ao (boc) = {b,c} and bo (aoc) = {1,c}, then (H,o,1) is not
a hyper BE-algebra.

Example 4. (i) Let H = {1,a}. Define hyperoperations “o;” and “og”

(iii)

as follows:

<] 1 a 09 1 a
1 | {1,a} | {a} 1| {l,a} | {a}
a | {1} [{1} a | {1,a} | {1}

Then1 € xo11,1 € xojx,1 € zogl and 1 € xosx for all x € H. By examining

the other properties of this algebra, we conclude (H,o1,1) and (H,o02,1) are
HV-BE-algebras. Since 10 (a o1 a) = {l,a} and aoj (107 a) = {1}, then
(H,o01,1) is not a hyper BE-algebra. Also, (H,o2,1) is an HV-BE-algebra.
Since 1 0y (@09 a) = {1,a} and a oy (109 a) = {1}, then (H,o09,1) is not a
hyper BE-algebra.

Let H = {1, a,b}. Define hyperoperations “o3” to “og” as follows:
03 1 a b o4 1 a b
1| {1} [{a,b} | {b} 1] {1} | {a} | {b}
a [{1,b} | {1} |{1,a,b} a | {1,b}| {1} |{1l,a,b}
b | {1} [{1,b}| {1,b} b | {1} | {106} | {1,b}
o5 1 a b 0g 1 a b
1] {1} | {a} | {b} 1] {1} | {a} {o}
a | {1} |{1,b}| {1,b} a | {1} [{1,a}| {1,a}
b | {1,a}| {1} |{1,a,b} b | {1,a}| {1} |{1l,a,b}

Then by calculating the properties of this algebra, it follows that (H,o3),
(H,o04),(H,o05) and (H,og) are HV-BE-algebras which are not hyper BE-
algebras.

Let H = {1,2,...} and the operation “o” be defined as follows:

on— b A if y<uz
rey= {h € H|h >y} otherwise,
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for any z,y € H. Then it can be verified that (H,o) is an HV-BE-algebra.
Since 10 (202) = {1} and 20 (102) = {1,3,4,...}, then (H,o0,1) is not a
hyper BE-algebra.

Example 5. (i) Let H ={1,a,b} and define a hyperoperation “o” as follows:
o 1 a b
1) {1} [{ab}| {b}
a|{1,0} | {1} |{1,a,b}
b| {1} [{1,b} ] {1,b}

Then it can be checked that (H,o,1) is a commutative HV-BE-algebra.
(ii) In Example 3, the HV-BE-algebra (H,o,1) is not commutative, since (a o
byobN(boa)oa=¢.

Theorem 2.3. Let (H,o,1) be an HV-BE-algebra. Then for all x,y,z € H and for
all nonempty subsets A and B of H the following statements hold:
(i) 5o (yo2) Syo(woz) andyo(zoz) <wo(yos2),
(ii) Ao (BoC)NBo(AoC) # ¢,
(iii) Ao(BoC)< Bo(AoC(C)and Bo(Ao(C)< Ao (Bo(),
(iv) x <yoy,
(v) x<zou,
(vi) A< BoB,
(vit) A< Ao A,
(viii) A< A,
(ix) 1 < A implies 1 € A,
(x) A< B ifand only if 1 € Ao B,
(xi)) AC1loA,
(xii) A C B implies A < B,
(ziti) 1 € xo(xol).

Proof. (i) By (HVBE2), there exists d € z o (yoz)Nyo (xoz). Then there
exists d € zo (yoz) and d € yo (x o z) such that d < d.

(ii) There exist ao(boc) C Ao(BoC') and bo(aoc) C Bo(AoC) foralla € A,b e B
and ¢ € C. Then by (HVBE2), there exists d € ao (boc)Nbo (aoc) and so
there exists d € Ao (BoC)NBo(AoC(),ie., Ao(BoC)NBo(AoC) # ¢.

(iii) By (ii), there exists d € Ao (Bo(C)N Bo (Ao (C). Then there exists
d€e Ao(Bo(C)and d € Bo(AoC) such that d < d.
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(iv) By (HVBEl), 1€ xzo0l1 Czo(yoy)andsol €xo(yoy),ie,z<youy.
(v) If y =z, by (iv), we have z < z o x.
(vi) There exist a € A and bob C Bo B such that a < bob by (iv), i.e., A < BoB.
(vii) There exist a € A and aoa C Ao A such that a < aoca by (v), i.e.,, A < Ao A.
(viii) By (HVBEL), there exists a € A such that a < a. It means A < A.
)

(ix) Let 1 < A. It means that there exists a € A such that 1 < a. By (HVBE4),
a=1andsoleA.

(x)
A<B&sdacA,dbe B st. a<b
S dac A, dbe B sit. 1€aob

s1c U aob
a€A,beB
& 1e Ao B.

(xi) Since 1o A = U loaand a € 1oa, we have A C 10 A.
acA
(xii) Let x € A, then x € B. Hence 1 € z oz, which implies 1 € Ao B. By (x),

we have A < B.
(xiii) By (HVBEl),1€zxo0lCxo(xol)andsol exzo(zol).
t

Theorem 2.4. Let (Hy,01,11) and (Hg,09,12) be HV-BE-algebras and H = Hy X
Hy. We define a hyperoperation “o” on H as follows,

(a1,b1) o (az,b2) = (ay o1 ag, by 02 ba)

for all (a1,b1), (az2,b2) € H, where for A C Hy and B C Hs by (A, B), we mean
(A,B) = {(a,b) | a € A,b € B},1 = (11,12). Then (H,o,1) is an HV-BE-algebra,
and it is called the HV-BE-product of Hy and Hs.

Proof. Let (z,y) € H. By HiVBE1 and HyVBEL, 1; € x 01 1; and 19 € y oy 1o.
Since (z,y) o (11,12) = (x 01 11,y 02 12),1 € (z,y) o 1. Then (x,y) < 1. The proof
of (z,y) < (x,y) is obtained by x < x and y < y. Therefore HVBELI is valid.

Let (z1,y1), (x2,¥2), (z3,y3) € H. Then

(r1,y1) o ((z2,92) © (3,93)) = (T1,91) © (2 01 3,Y2 °2 Y3)
= U{(xlayl) o(a,b) | a € xg0123,b€ yao2y3}
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:U{(fEl o1a,y102b|a € xy013,b € yao2y3}

= (x1 01 (x2 01 373)7 Y102 (Y2 02 43)).

By H1VBE2 and H2VBE2, 101 (2201 23) Nw201 (210123) # ¢, Y102 (Y202Y3) NYy202
(y102y3) # ¢ and so (z101(220123), Y102(y202y3))N (2201 (210123), Y202 (Y102Y3)) # -
On the other hand (zg 01 (21 01 23),y2 02 (y1 02 y3)) = (22, y2) o (x1 01 T3,Y1 02 Y3) =
(22,92)0((w1,y1)0(23,y3)). Therefore (x1,y1)o((z2, y2)o(x3,y3))N (w2, y2)o((21,y1)0
(x3,y3)) # ¢ and HVBE2 is valid.

Let (z,y) € H. By H;VBE3 and HyVBE3, z € 1; o 2,y € 1309 y. Then
(,y) € (lio1 @, 13 02y) = (11,12) o (z,y) = Lo (z,y). Therefore (z,y) € Lo (z,y)
and HVBES is valid.

Let (z,y) € H and (11,12) < (x,y). By HiVBE4 and H,VBE4, 1; < x and
1o < y implies z = 1; and y = 1. Then (z,y) = (11,12) = 1 and so HVBE4 is
valid. Therefore (H,o,1) is an HV-BE-algebra. O

Example 6. Consider two HV-BE-algebras (H,03,1) and (H, o4, 1) in Example 4.
By calculating the properties of the HV-BE-product, we conclude (H x H,o,(1,1))
with the following table is an HV-BE-algebra of (H,o03,1) and (H,oq4,1).

o (1,1) (1,a) (1,b) (a,1) (a,a) (a,b) (b,1) (b,a) (b,b)
@G 1 {@ D} 1 {A,e)} | {A,0)} A B c {1} [ {(B.a)} | {(b,0)}
(1,a) D {(1,1)} E F A G H {(b,1)} I
o) [{LD}| D D A F F {bD)| H H
(a,1) J K L {1, D} [ {(1,a)} | {(1,b)} M N (0]
(@a)| P 7 0 D [ {LDY]| E R M 5
@b | J P P _[{LD}| D D M R R
b, 1) [ {1, 1} | {1,a)} | {(1,0)} J K L J K L
(b,a) D {(1,1)} E P J Q P J Q
@0 [{(LD}| D D 7 P P 7 P P

WhereA:{( a, )7(b71)}7B:{(ava)a(baa)}acz{( b) (bab)}aD:{(Ll)a(lab)}v
E:{(Ll)v(l’a)’(l’b)}’ F:{(a’ 1)’(b’1 ’( ) (b )} G:{(a’ 1)’(1)’ 1)’(0’7@)7
(b,a),(a,b),(b,0)}, H = {(b,1),(b,b)}, I = {(b,1),(b,a),(d,b)}, J = {(1,1),(b,1)},
K ={(1,a),(b,a)}, L ={(1,b),(b,0)}, M = {(1,1), (a,1), (b, )}, N = {(1,a), (a,a),
(bva)}a 0= {(Lb)a(aub)?(bvb)}v P = {(171)’([77 )’( ) )’(b b)} Q= {(1 1) ( )
(La)a(bva)v(lab)v(b>b)}7R: {(171 7(“7 1)7(()7 1)7 1>b) ( ) (b b)} and S = {(1 1)
(a,1),(b,1),(1,a),(a,a), (b,a),(1,b),(a,b),(bd)}.

Theorem 2.5. Let (Hy,01,1) and (Ha,09,1) be HV-BE-algebras such that Hy N
Hy={1}, H=H{UHy and x oa yNyosx # ¢, for all x,y € Hy. Then (H,o,1) is
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an HV-BE-algebra, where the hyperoperation

o1y
roy = T ooy

“%” on H is defined as follows:

/I’f T,y € Hla
/I’f T,y € H25

{tit =z ort =y and t € Ha} otherwise,

for all xz,y € H.

Proof. (1) If x,y € Hy or Hy, then (H,o,1) is an HV-BE-algebra. (2) If x € H;
and y € Hy. Then HVBE1l, HVBE3 and HVBE4 is valid, Since (Hp,o01,1) is an
HV-BE-algebra. For checking HVBE2, we have two states:

(i) Let z € Hy. Then zo (yoz)Nyo (zoz)# ¢ and HVBE2 is valid.
(ii) Let z € Hy. Then z o (yoz)Nyo (zoz) # ¢ and HVBE2 is valid.

(3) If z € Hy and y € Hy. The proof is similar to (2). O

Definition 2.6. A nonempty subset S of an HV-BE-algebra (H, o, 1) is said to be
an HV-BE-subalgebra of H,if 1 € S and x oy C S, for all z,y € S.

Example 7. (i) Let H = {1,a,b}. Define a hyperoperation “oy’

)

as follows:

o1 1

b

{1}

{a}

{b}

{1} | {a,b}

1
a | {1}
b [{1,0}

{1}

{1}

Then by examining the properties of the HV-BE-algebra, it follows that
(H,o0,1) is an HV-BE-algebra and S = {1, a} is an HV-BE-subalgebra of H.

(ii) Let H = {1,a,b,c}. Define a hyperoperation “oy’

)

on H as follows:

o9 | 1 a b c

L {1} [ {a} | {0} | {c}
a | {1} | {1} | {b,c} | {b,c}
b {1} [ {1} ] {1} | {<}
c {1y [ {1} ] {1} | {1}

Then by checking the properties of the HV-BE-algebra it follows that (H, o, 1)
is an HV-BE-algebra and S = {1, b, ¢} is an HV-BE-subalgebra of H.

Example 8. Let H = {1,a,b,c,d} be a set. Then we can check that (H,o,1) with

the following table is an HV-BE-algebra.
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1 a b c d
{1} [ {a0} | {6 |{c}| {d}
{r,op | {1} [{Lab}|[{c}| {d}
{1} ({10} | {10} |[{c}| {d}
{1 | {c} {cb {1} [ {Lcd}
{1} | {dp | {dp [{1}] {1}

Then they can be verified that S = {1,a,b} is an HV-BE-subalgebra of H, but
T ={1,a,b,d} is not an HV-BE-subalgebra of H since do(aoa) = 1 and ao(doa) = d.

QO ||| O

Remark 1. By Theorem 2.5, we can see the HV-BE-algebra (H,o,1) in Example
8 is obtained from two HV-BE-algebras as follows:

01 1 a b o9 | 1 c d

1] {1} [{a,b} | {b} 1 {1} [ {cp | {d}
a [{1,b} | {1} |{1,a,b} c | {1} [ {1} | {c, d}
b | {1} [{1,6}] {1,0} d [ {1y [{1}] {1}

3. SOME TYPES OoF HV-BE-ALGEBRAS

Radfar and et. al. in [29] introduced some types of hyper BE-algebras. In this
section, we introduce them for HV-BE-algebras and give an example for each of
them.

Definition 3.1. We say an HV-BE-algebra is:
(i) a row HV-BE-algebra (briefly, an R-HV-BE-algebra), if 1 o x = {z}, for all

€ H,

(ii) a column HV-BE-algebra (briefly, a C-HV-BE-algebra), if z o1 = {1}, for
allz € H,

(iii) a diagonal HV-BE-algebra (briefly, a D-HV-BE-algebra), if z o x = {1}, for
allz € H,

(iv) a thin HV-BE-algebra (briefly, a T-HV-BE-algebra), if it is an R-HV-BE-
algebra and a C-HV-BE-algebra (or an RC-HV-BE-algebra),

(v) a very thin HV-BE-algebra (briefly, a V-HV-BE-algebra), if it is an R-HV-
BE-algebra, a C-HV-BE-algebra and a D-HV-BE-algebra (or an RCD-HV-
BE-algebra).

(vi) a CD-HV-BE-algebra, if it is a C-HV-BE-algebra and a D-HV-BE-algebra.
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Example 9. (i) In Example 4, (H,o04,1) is an R-HV-BE-algebra.
(ii) Let H = {1,a,b}. Define hyperoperations “o;” to “og” as follows:

o1 | 1 a b 09 1 a b

1 {1} ] {a} | {a,b} 1| {1} [{a}| {ab}

a [{1}] {1} |{1,qa,b} a | {1,b} | {1} | {1,a,b}

b [ {1} [ {10} | {1,b} b | {1y {1y {1}

o3| 1 a b og4 | 1 a b

1 {1} {a} | {b} 1 {1} | {a} | {b}

a | {1} ]| {1} |{l.ab} a {1} | {1} |{l.a,b}

b [ {1} [{1,0}] {1,0} b [ {1} {10} ] {1}

o5 1 a b og | 1 a b

1] {1} [{a}| {b} 1| {1} {a} | {a,b}

a | {1,b} | {1} | {1,qa,b} a | {1} | {1} | {1,a,b}

b | {1} {1} ] {10} b [ {1} [ {10} ] {1}

Then they can be checked that (H,o01,1) is a C-HV-BE-algebra, (H,09,1) is
a D-HV-BE-algebra, (H, o3, 1) is a T-HV-BE-algebra, (H,04,1) is a V-HV-
BE-algebra, (H,o05,1) is an RD-HV-BE-algebra and (H, og, 1) is a CD-HV-
BE-algebra.

Theorem 3.2. Let H be a D-HV-BE-algebra. Then

(i) there exists a € 1o x such that 1 € x o a,
(ii) xolNyo(zoy) # ¢,
(ii) zolNlo(zol)# ¢.

Proof. (i) By Definition 3.1, {1} =101 = 1o (zoz) and by (HVBE2), 1 €
o (1 o). Then there exists a € 1 o x such that 1 € x o a.
(ii) By (HVBE2), yo(zoy)Nzo(yoy) # ¢ and by Definition 3.1, zo(yoy) = zol.
Then zolNyo (xoy) # ¢.
(iii) By (HVBE2), o(xol)ﬂxo(lol) # ¢ and by Definition 3.1, xo(1lol) = zol.
ThenzolNlo(zol)#
O

Theorem 3.3. Let H be a CD-HV-BE-algebra. Then

(i) 1€ xo(youx),
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(ii) z € yox implies x < z, for all x,y,z € H.

Proof. (i) By Definition 3.1, yo (roz) = yo 1l = {1} and by (HVBE2), 1 €

zo(yoa).
(ii) By (i), 1 € z o z for some z € yox, then z < z.

4. BL-BE-ALGEBRAS

Can we arrive to hyper BE-algebras (HV-BE-algebras) from BE-algebras based
on “Ends lemma”? In the following theorem, we are going to answer this question

by changing it.

Theorem 4.1. Let (X,*,1) be a BE-algebra. Then the binary hyperoperation e :
X x X — o*(X) defined by

reoy=(xxyl<, forallz,y € X,
is an HV-BE-algebra. Moreover, if the BE-algebra (X, *,1) is commutative, then
the HV-BE-algebra (X, e,1) is commutative.

Proof. Let x € X. First, we show that (HVBEL) is valid. Since zel = (zx1]< = {t €
X |t<xzxl},thenl e zelandsox <1. Also, we have rex = (zxz]< ={t € X |
t <azxax}, then 1 € x ex and so < z. Then, we show that (HVBE2) is valid. We
have ve (yez) = {vet |t € yoz} = {wet |t <yxz}={t € X [t <zxt,t <yxz}.
Then there exist z * (yx2) € vz o (yeoz) and y x (x x z) € y e (x e z). Since
xx(y*xz) =yx*(x*xz), we have z o (yoez)Nye (xez)# ¢. Now we check that
(HVBES3) is valid. Since lex = (1xx]< = {t € X |t < 1xx}, then x € 1ex. Finally
for checking (HVBE4), let 1 < z. Since 1l € lez = (1xz]< ={t € X |t <z}, we
have 1 < x and so 1 xz = 1. On the other hand, 1 * x = x. Therefore z = 1.
Suppose that (z xy) *xy = (y*xz) xx. Then (zrey)ey ={tey |t < xxy} =
{t e X |t <txyt <xzxy}. Therefore, (z*y)*y € (z oy) ey and similarly
(y*x)*xx € (yeox)ex. Since the BE-algebra (X, *,1) is commutative, we have
(roy)eyNn(yex)ex# ¢ and the HV-BE-algebra (H, e, 1) constructed in this way

is commutative. O

The HV-BE-algebra (X, e, 1) constructed in this way, we call the associated HV-
BE-algebra to the BE-algebra (X, *,1) or “Begins lemma” based on HV-BE-algebras,
or BL-BE-algebras for short.
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Example 10. Let X = {1,a} be a set with the following table:

Then it is easy to see that (X, *,1) is a BE-algebra and (X, e, 1) is a BL-BE-algebra

with the following:

*

l|a

1

1l|a

a

11

1 a
X | {a}
X | X

Example 11. Let X := {1,a,b,c,d,0} be a set with the following table:

Then (X, *,1) is a BE-algebra [20]. We can check that (X, e, 1) is a commutative
BL-BE-algebra with the following table:

x| 1|la|blc|d]|O
1{1]|a|b|lc|d]|O
all|lllalclec|d
bi1|1|1|ec|c]c
cllla|b|l|lalb
d|l|1l|lal|l|l]|a
O(1(1f1]1]1]1

o 1 a b c d 0
[ X [{a:6,4.0} | {6.0] [{ed,0}| {40} | {0}
al|X X {a,b,d,0} | {c,d,0} | {c,d,0} {d,0}
b| X X X {c,d,0} | {c,d,0} {c,d,0}
c| X |{a,b,d0}| {b0} X {a,b,d,0} | {b,0}
a1 x X 10,0,d,01| X X Ta,b,d,0]
0|X X X X X X

Theorem 4.2. Let (X,e,1) be a BL-BE-algebra. Then for any x,y € X and for all

nonempty subsets A and B of X the following statements holds:

(i) ze(yoy) =X,
(ii)) o (xex) =X,

(iii) Ao (Be
(iv) Ae (Ae A)

B) =X,
X,

(v) Ae A=X,
(vi) xo(zel)=X.
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Proof. It is straightforward. O

Theorem 4.3. Let (X1,01,11) and (X2, e5,15) be BL-BE-algebras and X = X1 x

g 0

Xo. We define a hyperoperation “e” on X as follows,

(z1,91) ® (z2,y2) = (21 @1 T2, Y1 ®2 Y2)
for all (x1,11), (x2,y2) € H, where for A C X1 and B C X5 by (A, B) we mean
(A,B) = {(a,b) | a € A,b € B},1 = (11,12). Then (X,e,1) is a BL-BE-algebra,
and it is called the BL-BE-product of X1 and Xs.

Proof. 1t is similar to the proof of Theorem 2.4. O

Example 12. Let X; = {1,a,b} and Xo = {1,¢,d} be two sets and (X1, e1,1) and
(X2,09,1) be two BL-BE-algebras as follows:

o | 1 a b o |1 c d

1] X | {a, b} | {0} 1| Xo | {c,dy | {d}
a X1 X1 {a,b} C X2 X2 {C,d}
b | X1| Xu X4 d | Xo| Xo Xo

It can be verified that (X; x Xo,e,(1,1)) is a BL-BE-algebra by Theorem 4.1.
Theorem 4.4. Let (X1,e1,1) and (X2, e2,1) be BL-BE-algebras such that X1NXy =
{1} and X = X1 UXs. Then (X,e,1) is a BL-BE-algebra, where the hyperoperation
“@” on H is defined as follows:

r ey if$,y€X1,

zey:=< xey ifxr,yc€ Xo,
X otherwise,
forallz,y € X.
Proof. 1t is similar to the proof of Theorem 2.5. O

We use the notation X; @ X for the union of two BL-BE-algebras X; and Xbs.

Example 13. Consider two BL-BE-algebras (X1, e;1,1) and (X2, e2,1) in Example
12. By Theorem 2.5, it can be verified that (X, e, 1) with the following table is a
BL-BE-algebra.

o | 1 a b c d

1 Xy [ {a,b} | {0} [{cd}| {d}
al X1 X1 |{ab} X X
bl X1 Xy X1 X X
c | Xo X X Xo | {c,d}
d| Xo X X X X5
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Now, we give the concept of a principal beginning generated by an element, which
lies in the subset in H:= X.
Suppose an HV-BE-algebra (H,e, 1) associated to the BE-algebra (H,x,1) and

a nonempty subset G of H. For an arbitrary element g € G, we may write

Yl<e ={r G|z <g}
as well as
(gl<y ={r € H |z <g}.
Given this notation we may distinguish between (G, e, 1) based on the hyperoper-
ation eg such that for an arbitrary pair of elements a,b € G we set
aecb=(axbleg = {z€G|a<axh)
and (G, e, 1), where a e b is defined by
aegb=(axbl<, ={reH|z<axb}.

Obviously, properties of (G, eg,1) and (G, e, 1) will not be the same.

Theorem 4.5. Let (H,e,1) be the associated HV-BE-algebra to the BE-algebra
(H,*,1) and (G, *, 1) its BE-subalgebra of H. Then

(i) x € yoy G, for all z,y € H,

(ii) x € yog G, for all z,y € G.

Proof. (i) Let z,y € H. Then yey G = U yorg=yerglU...= (yxl]<,U... =
geG
l<pU..={te H|txl=1}U..=HU..=Handsox € yoy G.

(ii) Let 2,y € G. Then y o G = UyoGg:yoglU...:GandsoyEG.
geG

O

Remark 2. In general, in every BL-BE-algebra, Theorem 4.5 is valid. For see, in
Example 13, a € cex X in the union of two BL-BE-algebras X; and X5 i.e., X.

Theorem 4.6. Let (H, e, 1) be the associated HV-BE-algebra of a BE-algebra (H,*,1).
If (G,%,1) is a subalgebra of a BE-algebra (H,*,1), then (G,eq,1) is an HV-BE-

algebra.

Proof. Let v € G. Since v eg 1= (xx1l]<, ={t € G|t <1}, then 1 € zo¢ 1 and
sox < 1. wehave vegz = (xxz]<, = {t € G|t <1}, then 1 € z og z and so
x < x. Also, there exist z * (y x z) € zog (yog 2), y* (x*2) € y o (x o z) and



232 R. NagHIBI, S. M. ANVARIYEH & S. MIRVAKILI

rx(yxz) =yx*(z*z), then x og (yeg z) Ny e (x eg z) # ¢. Moreover, since
legex = (1xzl<, ={t € G|t <z}, then x € 1 eg z. Finally, let 1 < x. Since
lelegr=(1*xzl<,={te G|t <z}, wehave 1 <z and so 1*x = 1. On the
other hand 1 * = x. Therefore x = 1. O

Remark 3. In Theorem 4.6, (G,ep,1) is not an HV-BE-algebra. Since G is not

closed with respect to the hyperoperation eg;.

Example 14. Let H = {1, a,b} and define the operation “x” on H by the following
table:

1
1
1
1

S Q| *
SR B R ES]
= o o o

It can be easily verified that (H,*,1) is a BE-algebra. Further define the hyperop-
eration in the usually “Begins lemma” way, i.e. for an arbitrary pair x,y € H define
rey = (x+*yl<. Then (H,e,1)is an HV-BE-algebra with the following table:

o 1| a b
A [ {af [ 0]
a| H| H |{b}
b|H|{a}| H

G = {1,a} is a BE-subalgebra of a BE-algebra (H,*,1) and by Theorem 4.6,
(G, e, 1) is an HV-BE-algebra. But, (G, ey, 1) is not an HV-BE-algebra.
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