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CONSTRUCTION OF AN HV-BE-ALGEBRA FROM

A BE-ALGEBRA BASED ON “BEGINS LEMMA”

R. Naghibi a, S. M. Anvariyeh b, ∗ and S. Mirvakili c

Abstract. In this paper, first we introduce the new class of HV-BE-algebra as
a generalization of a (hyper) BE-algebra and prove some basic results and present
several examples. Then, we construct the HV-BE-algebra associated to a BE-algebra
(namely BL-BE-algebra) based on “Begins lemma” and investigate it.

1. Introduction

The class of BCK-algebras was introduced in 1978 by Y. Imai and K. Iseki [17].

Then in 1998, Y. B. Jun et al. [18] introduced a new notion, called a BH-algebra,

which is a generalization of a BCK-algebra, i.e., x∗x = 0; x∗0 = x and x∗y = 0 and

y ∗ x = 0 imply x = y for any x, y ∈ X. In 1999, J. Neggers et al. [22] introduced

the notion of a d-algebra which is another generalization of a BCK-algebra. Also,

in 2007, H. S. Kim and Y. H. Kim [20] introduced the notion of a BE-algebra, as a

generalization of a BCK-algebra, and using the notion of a upper set they gave an

equivalent condition of a filter in a BE-algebra.

In 2012 and 2013, A. Rezaei et al. [30, 31] studied commutative ideals in BE-

algebras and gave some properties. Also, they showed a commutative implicative

BE-algebra is equivalent to a commutative self distributive BE-algebra. Moreover,

they proved every Hilbert algebra is a self distributive BE-algebra and a commutative

self distributive BE-algebra is a Hilbert algebra and showed one can not remove the

conditions of commutativity and self distributivity. In [1], S. S. Ahn et al. introduced

the notion of a terminal section of a BE-algebra and gave some characterization of
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a commutative BE-algebra in terms of lattice order relations and terminal sections.

Recently, R. A. Borzooei et al. introduced the notion of a pseudo BE-algebra which

is a generalization of a BE-algebra. They defined the basic concepts of a pseudo

subalgebra and a pseudo filter and proved that under some conditions, a pseudo

subalgebra can be a pseudo filter [2].

The algebraic hyperstructure theory as a generalization of the algebraic structure

was first introduced in 1934, by French mathematician F. Marty at the 8th congress

of Scandinavian mathematicians [21]. A hypergroupoid is a non-empty set H with a

hyperoperation ◦ defined on H, that is, a mapping of H ×H into the family of non-

empty subsets of H. If (x, y) ∈ H×H, its image under ◦ is denoted by x◦y. If A,B
are non-empty subsets of H then A◦B is given by A◦B =

∪
{x◦y | x ∈ A, y ∈ B}.

A hypergroupoid (H, ◦) is called a semihypergroup if a ◦ (b ◦ c) = (a ◦ b) ◦ c for all
a, b, c ∈ H and it is called a hypergroup if it is a semihypergroup and a◦H = H◦a = H

for all a ∈ H. For instance, if x ◦ y = {x, y} for all x, y ∈ H, then (H, ◦) is

a hypergroup. Afterward, because of many applications of this theory in applied

sciences, many authors study in this context. Some reviews of the hyperstructure

theory can be found in [6, 8, 38]. Corsini’s book on hyperstructures [4] points out

their applications in fuzzy and rough set theory, cryptography, codes, automata,

probability, geometry, lattices, binary relations, graphs and hypergraphs. In [19],

Y. B. Jun et al. applied the hyperstructure to a BCK-algebra and introduced the

notion of a hyper BCK-algebra which is a generalization of the BCK-algebra and

investigated some related properties. A. Radfar et al. defined the notion of a

hyper BE-algebra, some types of hyper filters in this structure and described the

relationship between them [29].

An HV-structure as a generalization of the hyperstructure was first introduced

by Vougiouklis at the Forth AHA congress in 1990 [39]. There are some important

reasons for introducing and investigation of so called HV-structures, that is an HV-

group, an HV-ring, and so on, which are defined from the well known classes of

hyperstructures in a certain simple way. The idea consists in replacing some axioms,

such as the associative law, the distributive law, and others by the corresponding

weak ones. The hyperstructure (H, ◦) is called an HV-semigroup if a ◦ (b ◦ c) ∩ (a ◦
b) ◦ c ̸= ϕ for all a, b, c ∈ H. The hyperstructure (H, ◦) is called an HV-group if

(H, ◦) is an HV-semigroup and a ◦H = H ◦a = H for all a ∈ H. Since a quotient of

an HV-structure with respect to a fundamental equivalence relation (β∗, γ∗, ϵ∗, ets.)

is always an ordinary structure and this is why it is called an HV-structure. Many
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authors have published papers relating different “HV-structures”. In particular,

a variety of HV-structures theory have been defined such as: partial abelian HV-

monoids [9], HV-semigroups [33], HV-groups [34], HV-rings [35], HV-modules [10]

and HV-vector spaces [37]. In [7] Davvaz surveyed the theory of HV-structures.

The relation of ordered sets and algebraic hyperstructures was first studied by

Vougiouklis in 1987 [36]. Then the connection between hyperstructures and ordered

sets has been analyzed by many researchers such as Corsini [5], Omidi and Davvaz

[28] Hoskova [16], Heidari and Davvaz [14], and others. One special aspect of this

issue, known as EL-hyperstructures, which was first introduced by Chavlina in [3]

are hypercompositional structures constructed from a partially (semi)group using

a construction known as Ending lemma or Ends lemma. Lots of papers regarding

this topic have been written by number of authors like Hoskova [15, 16], Novak

[23, 26, 27], Rosenberg [32], and others [11, 12, 13]. Among them, Novak in [23]

studied subhyperstructures of EL-hyperstructures and in [24] he discussed some

interesting results of important elements in this family of hyperstructures. Then,

in [24] Novak studied some basic properties of EL-hyperstructures like invertibility,

normality, property of being closed and ultra closed, regularity, and etc. Now, there

arises a natural question that “Is it possible to go further to stronger hyperstructure

like BE-algebras, B-algebras, etc?”

In this paper, first we define the concept of an HV-BE-algebra and prove some

basic results, then we apply “Ends lemma” on a BE-algebra and achieve the new

HV-BE-algebra associated to it.

2. Basic Definitions and Results

The notion of a BE-algebra, as a generalization of a BCK-algebra, was introduced

by H. S. Kim and Y. H. Kim [20]. The aim of this section is to introduce an HV-

BE-algebra, give some examples, and find some of their properties. Let X be a

nonempty set, ∗ : X × X → X be a binary operation and “1” be constant. The

triple (X, ∗, 1) is called a BE-algebra if for all x ∈ X we have x∗x = 1, x∗1 = 1 and

1∗x = x, where a relation “≤” is defined by x ≤ y if and only if x∗y = 1 and for all

x, y, z ∈ X, we have x ∗ (y ∗ z) = y ∗ (x ∗ z). A nonempty subset Y of a BE-algebra

(X, ∗, 1) is said to be a BE-subalgebra of X, if 1 ∈ Y and x ∗ y ∈ Y , for all x, y ∈ Y .

A BE-algebra (X, ∗, 1) is said to be commutative, if (x ∗ y) ∗ y = (y ∗ x) ∗ x for any

x, y ∈ X [20].
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Definition 2.1 ([29]). Let H be a nonempty set, ◦ : H ×H → ℘∗(H) be a hyper-

operation and “1” be constant. The triple (H, ◦, 1) is called a hyper BE-algebra if

for all x, y, z ∈ H we have x ≤ 1, x ≤ x, x ◦ (y ◦ z) = y ◦ (x ◦ z), x ∈ 1 ◦ x and 1 ≤ x

implies x = 1, where the relation “≤” is defined by x ≤ y if and only if 1 ∈ x◦y. For
any two nonempty subsets X and Y of H, X ≤ Y if and only if there exist x ∈ X

and y ∈ Y such that x ≤ y. A nonempty subset S of a hyper BE-algebra H is said

to be a hyper BE-subalgebra of H, if 1 ∈ S and x ◦ y ⊆ S, for all x, y ∈ S.

Example 1. Let H = {1, a, b} be a set with the following table:

◦ 1 a b
1 {1} {a, b} {b}
a {1} {1, a} {1, b}
b {1} {1, a, b} {1}

Then it follows that (H, ◦, 1) is a hyper BE-algebra.

Example 2. It is obvious that {1} and H are hyper BE-subalgebras of a hyper

BE-algebra of H. In Example 1, {1, a} is not a hyper BE-subalgebra of the hyper

BE-algebra (H, ◦, 1). Also, {1} and {1, b} are hyper BE-subalgebras of the hyper

BE-algebra (H, ◦, 1).

Definition 2.2. (H, ◦, 1) is called an HV-BE-algebra, if it satisfies the following

axioms:

(HVBE1) x ≤ 1, x ≤ x,

(HVBE2) x ◦ (y ◦ z) ∩ y ◦ (x ◦ z) ̸= ϕ,

(HVBE3) x ∈ 1 ◦ x,
(HVBE4) 1 ≤ x implies x = 1, for all x, y, z ∈ H,

where the relation “≤” is defined by x ≤ y if and only if 1 ∈ x ◦ y. For any two

nonempty subsets X and Y of H, X ≤ Y if and only if there exist x ∈ X and y ∈ Y

such that x ≤ y. An HV-BE-algebra (H, ◦, 1) is said to be commutative if

(x ◦ y) ◦ y ∩ (y ◦ x) ◦ x ̸= ϕ

for all x, y ∈ H.

It is obvious that a hyper BE-algebra is an HV-BE-algebra.

Example 3. Let H = {1, a, b, c} and define a hyperoperation “◦” as follows:
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◦ 1 a b c
1 {1} {a} {b} {c}
a {1} {1} {b, c} {b, c}
b {1} {1} {1} {c}
c {1} {1} {1} {1}

Then by examining the HV-BE-algebra’s properties we conclude that (H, ◦, 1) is an
HV-BE-algebra. Since a ◦ (b ◦ c) = {b, c} and b ◦ (a ◦ c) = {1, c}, then (H, ◦, 1) is not
a hyper BE-algebra.

Example 4. (i) Let H = {1, a}. Define hyperoperations “◦1” and “◦2”
as follows:

◦1 1 a
1 {1, a} {a}
a {1} {1}

◦2 1 a
1 {1, a} {a}
a {1, a} {1}

Then 1 ∈ x◦11, 1 ∈ x◦1x, 1 ∈ x◦21 and 1 ∈ x◦2x for all x ∈ H. By examining

the other properties of this algebra, we conclude (H, ◦1, 1) and (H, ◦2, 1) are
HV-BE-algebras. Since 1 ◦1 (a ◦1 a) = {1, a} and a ◦1 (1 ◦1 a) = {1}, then
(H, ◦1, 1) is not a hyper BE-algebra. Also, (H, ◦2, 1) is an HV-BE-algebra.

Since 1 ◦2 (a ◦2 a) = {1, a} and a ◦2 (1 ◦2 a) = {1}, then (H, ◦2, 1) is not a

hyper BE-algebra.

(ii) Let H = {1, a, b}. Define hyperoperations “◦3” to “◦6” as follows:

◦3 1 a b
1 {1} {a, b} {b}
a {1, b} {1} {1, a, b}
b {1} {1, b} {1, b}

◦4 1 a b
1 {1} {a} {b}
a {1, b} {1} {1, a, b}
b {1} {1, b} {1, b}

◦5 1 a b
1 {1} {a} {b}
a {1} {1, b} {1, b}
b {1, a} {1} {1, a, b}

◦6 1 a b
1 {1} {a} {b}
a {1} {1, a} {1, a}
b {1, a} {1} {1, a, b}

Then by calculating the properties of this algebra, it follows that (H, ◦3),
(H, ◦4), (H, ◦5) and (H, ◦6) are HV-BE-algebras which are not hyper BE-

algebras.

(iii) Let H = {1, 2, ...} and the operation “◦” be defined as follows:

x ◦ y =

{
{1} if y ≤ x
{h ∈ H|h ≥ y} otherwise,
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for any x, y ∈ H. Then it can be verified that (H, ◦) is an HV-BE-algebra.

Since 1 ◦ (2 ◦ 2) = {1} and 2 ◦ (1 ◦ 2) = {1, 3, 4, ...}, then (H, ◦, 1) is not a

hyper BE-algebra.

Example 5. (i) Let H = {1, a, b} and define a hyperoperation “◦” as follows:

◦ 1 a b
1 {1} {a, b} {b}
a {1, b} {1} {1, a, b}
b {1} {1, b} {1, b}

Then it can be checked that (H, ◦, 1) is a commutative HV-BE-algebra.

(ii) In Example 3, the HV-BE-algebra (H, ◦, 1) is not commutative, since (a ◦
b) ◦ b ∩ (b ◦ a) ◦ a = ϕ.

Theorem 2.3. Let (H, ◦, 1) be an HV-BE-algebra. Then for all x, y, z ∈ H and for

all nonempty subsets A and B of H the following statements hold:

(i) x ◦ (y ◦ z) ≤ y ◦ (x ◦ z) and y ◦ (x ◦ z) ≤ x ◦ (y ◦ z),
(ii) A ◦ (B ◦ C) ∩B ◦ (A ◦ C) ̸= ϕ,

(iii) A ◦ (B ◦ C) ≤ B ◦ (A ◦ C) and B ◦ (A ◦ C) ≤ A ◦ (B ◦ C),

(iv) x ≤ y ◦ y,
(v) x ≤ x ◦ x,
(vi) A ≤ B ◦B,

(vii) A ≤ A ◦A,

(viii) A ≤ A,

(ix) 1 ≤ A implies 1 ∈ A,

(x) A ≤ B if and only if 1 ∈ A ◦B,

(xi) A ⊆ 1 ◦A,

(xii) A ⊆ B implies A ≤ B,

(xiii) 1 ∈ x ◦ (x ◦ 1).

Proof. (i) By (HVBE2), there exists d ∈ x ◦ (y ◦ z) ∩ y ◦ (x ◦ z). Then there

exists d ∈ x ◦ (y ◦ z) and d ∈ y ◦ (x ◦ z) such that d ≤ d.

(ii) There exist a◦(b◦c) ⊆ A◦(B◦C) and b◦(a◦c) ⊆ B◦(A◦C) for all a ∈ A, b ∈ B

and c ∈ C. Then by (HVBE2), there exists d ∈ a ◦ (b ◦ c)∩ b ◦ (a ◦ c) and so

there exists d ∈ A ◦ (B ◦C)∩B ◦ (A ◦C), i.e., A ◦ (B ◦C)∩B ◦ (A ◦C) ̸= ϕ.

(iii) By (ii), there exists d ∈ A ◦ (B ◦ C) ∩ B ◦ (A ◦ C). Then there exists

d ∈ A ◦ (B ◦ C) and d ∈ B ◦ (A ◦ C) such that d ≤ d.
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(iv) By (HVBE1), 1 ∈ x ◦ 1 ⊆ x ◦ (y ◦ y) and so 1 ∈ x ◦ (y ◦ y), i.e., x ≤ y ◦ y.
(v) If y = x, by (iv), we have x ≤ x ◦ x.
(vi) There exist a ∈ A and b◦b ⊆ B◦B such that a ≤ b◦b by (iv), i.e., A ≤ B◦B.

(vii) There exist a ∈ A and a◦a ⊆ A◦A such that a ≤ a◦a by (v), i.e., A ≤ A◦A.

(viii) By (HVBE1), there exists a ∈ A such that a ≤ a. It means A ≤ A.

(ix) Let 1 ≤ A. It means that there exists a ∈ A such that 1 ≤ a. By (HVBE4),

a = 1 and so 1 ∈ A.

(x)

A ≤ B ⇔ ∃a ∈ A, ∃b ∈ B s.t. a ≤ b

⇔ ∃a ∈ A, ∃b ∈ B s.t. 1 ∈ a ◦ b

⇔ 1 ∈
∪

a∈A,b∈B
a ◦ b

⇔ 1 ∈ A ◦B.

(xi) Since 1 ◦A =
∪
a∈A

1 ◦ a and a ∈ 1 ◦ a, we have A ⊆ 1 ◦A.

(xii) Let x ∈ A, then x ∈ B. Hence 1 ∈ x ◦ x, which implies 1 ∈ A ◦ B. By (x),

we have A ≤ B.

(xiii) By (HVBE1), 1 ∈ x ◦ 1 ⊆ x ◦ (x ◦ 1) and so 1 ∈ x ◦ (x ◦ 1).
�

Theorem 2.4. Let (H1, ◦1, 11) and (H2, ◦2, 12) be HV-BE-algebras and H = H1 ×
H2. We define a hyperoperation “◦” on H as follows,

(a1, b1) ◦ (a2, b2) = (a1 ◦1 a2, b1 ◦2 b2)

for all (a1, b1), (a2, b2) ∈ H, where for A ⊆ H1 and B ⊆ H2 by (A,B), we mean

(A,B) = {(a, b) | a ∈ A, b ∈ B}, 1 = (11, 12). Then (H, ◦, 1) is an HV-BE-algebra,

and it is called the HV-BE-product of H1 and H2.

Proof. Let (x, y) ∈ H. By H1VBE1 and H2VBE1, 11 ∈ x ◦1 11 and 12 ∈ y ◦2 12.
Since (x, y) ◦ (11, 12) = (x ◦1 11, y ◦2 12), 1 ∈ (x, y) ◦ 1. Then (x, y) ≤ 1. The proof

of (x, y) ≤ (x, y) is obtained by x ≤ x and y ≤ y. Therefore HVBE1 is valid.

Let (x1, y1), (x2, y2), (x3, y3) ∈ H. Then

(x1, y1) ◦ ((x2, y2) ◦ (x3, y3)) = (x1, y1) ◦ (x2 ◦1 x3, y2 ◦2 y3)

=
∪

{(x1, y1) ◦ (a, b) | a ∈ x2 ◦1 x3, b ∈ y2 ◦2 y3}
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=
∪

{(x1 ◦1 a, y1 ◦2 b | a ∈ x2 ◦1 x3, b ∈ y2 ◦2 y3}

= (x1 ◦1 (x2 ◦1 x3), y1 ◦2 (y2 ◦2 y3)).

By H1VBE2 and H2VBE2, x1 ◦1 (x2 ◦1x3)∩x2 ◦1 (x1 ◦1x3) ̸= ϕ, y1 ◦2 (y2 ◦2 y3)∩y2 ◦2
(y1◦2y3) ̸= ϕ and so (x1◦1(x2◦1x3), y1◦2(y2◦2y3))∩(x2◦1(x1◦1x3), y2◦2(y1◦2y3)) ̸= ϕ.

On the other hand (x2 ◦1 (x1 ◦1 x3), y2 ◦2 (y1 ◦2 y3)) = (x2, y2) ◦ (x1 ◦1 x3, y1 ◦2 y3) =
(x2, y2)◦((x1, y1)◦(x3, y3)). Therefore (x1, y1)◦((x2, y2)◦(x3, y3))∩(x2, y2)◦((x1, y1)◦
(x3, y3)) ̸= ϕ and HVBE2 is valid.

Let (x, y) ∈ H. By H1VBE3 and H2VBE3, x ∈ 11 ◦1 x, y ∈ 12 ◦2 y. Then

(x, y) ∈ (11 ◦1 x, 12 ◦2 y) = (11, 12) ◦ (x, y) = 1 ◦ (x, y). Therefore (x, y) ∈ 1 ◦ (x, y)
and HVBE3 is valid.

Let (x, y) ∈ H and (11, 12) ≤ (x, y). By H1VBE4 and H2VBE4, 11 ≤ x and

12 ≤ y implies x = 11 and y = 12. Then (x, y) = (11, 12) = 1 and so HVBE4 is

valid. Therefore (H, ◦, 1) is an HV-BE-algebra. �

Example 6. Consider two HV-BE-algebras (H, ◦3, 1) and (H, ◦4, 1) in Example 4.

By calculating the properties of the HV-BE-product, we conclude (H ×H, ◦, (1, 1))
with the following table is an HV-BE-algebra of (H, ◦3, 1) and (H, ◦4, 1).

◦ (1, 1) (1, a) (1, b) (a, 1) (a, a) (a, b) (b, 1) (b, a) (b, b)

(1, 1) {(1, 1)} {(1, a)} {(1, b)} A B C {(b, 1)} {(b, a)} {(b, b)}
(1, a) D {(1, 1)} E F A G H {(b, 1)} I

(1, b) {(1, 1)} D D A F F {(b, 1)} H H

(a, 1) J K L {(1, 1)} {(1, a)} {(1, b)} M N O

(a, a) P J Q D {(1, 1)} E R M S

(a, b) J P P {(1, 1)} D D M R R

(b, 1) {(1, 1)} {(1, a)} {(1, b)} J K L J K L

(b, a) D {(1, 1)} E P J Q P J Q

(b, b) {(1, 1)} D D J P P J P P

whereA = {(a, 1), (b, 1)}, B = {(a, a), (b, a)}, C = {(a, b), (b, b)},D = {(1, 1), (1, b)},
E = {(1, 1), (1, a), (1, b)}, F = {(a, 1), (b, 1), (a, b), (b, b)}, G = {(a, 1), (b, 1), (a, a),
(b, a), (a, b), (b, b)}, H = {(b, 1), (b, b)}, I = {(b, 1), (b, a), (b, b)}, J = {(1, 1), (b, 1)},
K = {(1, a), (b, a)}, L = {(1, b), (b, b)},M = {(1, 1), (a, 1), (b, 1)}, N = {(1, a), (a, a),
(b, a)}, O = {(1, b), (a, b), (b, b)}, P = {(1, 1), (b, 1), (1, b), (b, b)}, Q = {(1, 1), (b, 1),
(1, a), (b, a), (1, b), (b, b)}, R = {(1, 1), (a, 1), (b, 1), (1, b), (a, b), (b, b)} and S = {(1, 1),
(a, 1), (b, 1), (1, a), (a, a), (b, a), (1, b), (a, b), (b, b)}.

Theorem 2.5. Let (H1, ◦1, 1) and (H2, ◦2, 1) be HV-BE-algebras such that H1 ∩
H2 = {1}, H = H1 ∪H2 and x ◦2 y ∩ y ◦2 x ̸= ϕ, for all x, y ∈ H2. Then (H, ◦, 1) is
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an HV-BE-algebra, where the hyperoperation “◦” on H is defined as follows:

x ◦ y :=

 x ◦1 y if x, y ∈ H1,
x ◦2 y if x, y ∈ H2,
{t|t = x or t = y and t ∈ H2} otherwise,

for all x, y ∈ H.

Proof. (1) If x, y ∈ H1 or H2, then (H, ◦, 1) is an HV-BE-algebra. (2) If x ∈ H1

and y ∈ H2. Then HVBE1, HVBE3 and HVBE4 is valid, Since (H1, ◦1, 1) is an

HV-BE-algebra. For checking HVBE2, we have two states:

(i) Let z ∈ H1. Then x ◦ (y ◦ z) ∩ y ◦ (x ◦ z) ̸= ϕ and HVBE2 is valid.

(ii) Let z ∈ H2. Then x ◦ (y ◦ z) ∩ y ◦ (x ◦ z) ̸= ϕ and HVBE2 is valid.

(3) If x ∈ H2 and y ∈ H1. The proof is similar to (2). �

Definition 2.6. A nonempty subset S of an HV-BE-algebra (H, ◦, 1) is said to be

an HV-BE-subalgebra of H, if 1 ∈ S and x ◦ y ⊆ S, for all x, y ∈ S.

Example 7. (i) Let H = {1, a, b}. Define a hyperoperation “◦1” as follows:

◦1 1 a b
1 {1} {a} {b}
a {1} {1} { a, b}
b {1, b} {1} {1}

Then by examining the properties of the HV-BE-algebra, it follows that

(H, ◦, 1) is an HV-BE-algebra and S = {1, a} is an HV-BE-subalgebra of H.

(ii) Let H = {1, a, b, c}. Define a hyperoperation “◦2” on H as follows:

◦2 1 a b c
1 {1} {a} {b} {c}
a {1} {1} {b, c} {b, c}
b {1} {1} {1} {c}
c {1} {1} {1} {1}

Then by checking the properties of the HV-BE-algebra it follows that (H, ◦2, 1)
is an HV-BE-algebra and S = {1, b, c} is an HV-BE-subalgebra of H.

Example 8. Let H = {1, a, b, c, d} be a set. Then we can check that (H, ◦, 1) with
the following table is an HV-BE-algebra.
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◦ 1 a b c d
1 {1} {a, b} {b} {c} {d}
a {1, b} {1} {1, a, b} {c} {d}
b {1} {1, b} {1, b} {c} {d}
c {1} {c} {c} {1} {1, c, d}
d {1} {d} {d} {1} {1}

Then they can be verified that S = {1, a, b} is an HV-BE-subalgebra of H, but

T = {1, a, b, d} is not an HV-BE-subalgebra ofH since d◦(a◦a) = 1 and a◦(d◦a) = d.

Remark 1. By Theorem 2.5, we can see the HV-BE-algebra (H, ◦, 1) in Example

8 is obtained from two HV-BE-algebras as follows:

◦1 1 a b
1 {1} {a, b} {b}
a {1, b} {1} {1, a, b}
b {1} {1, b} {1, b}

◦2 1 c d
1 {1} {c} {d}
c {1} {1} {c, d}
d {1} {1} {1}

3. Some Types of HV-BE-algebras

Radfar and et. al. in [29] introduced some types of hyper BE-algebras. In this

section, we introduce them for HV-BE-algebras and give an example for each of

them.

Definition 3.1. We say an HV-BE-algebra is:

(i) a row HV-BE-algebra (briefly, an R-HV-BE-algebra), if 1 ◦ x = {x}, for all
x ∈ H,

(ii) a column HV-BE-algebra (briefly, a C-HV-BE-algebra), if x ◦ 1 = {1}, for
all x ∈ H,

(iii) a diagonal HV-BE-algebra (briefly, a D-HV-BE-algebra), if x ◦ x = {1}, for
all x ∈ H,

(iv) a thin HV-BE-algebra (briefly, a T-HV-BE-algebra), if it is an R-HV-BE-

algebra and a C-HV-BE-algebra (or an RC-HV-BE-algebra),

(v) a very thin HV-BE-algebra (briefly, a V-HV-BE-algebra), if it is an R-HV-

BE-algebra, a C-HV-BE-algebra and a D-HV-BE-algebra (or an RCD-HV-

BE-algebra).

(vi) a CD-HV-BE-algebra, if it is a C-HV-BE-algebra and a D-HV-BE-algebra.
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Example 9. (i) In Example 4, (H, ◦4, 1) is an R-HV-BE-algebra.

(ii) Let H = {1, a, b}. Define hyperoperations “◦1” to “◦6” as follows:

◦1 1 a b
1 {1} {a} {a, b}
a {1} {1} {1, a, b}
b {1} {1, b} {1, b}

◦2 1 a b
1 {1} {a} {a, b}
a {1, b} {1} {1, a, b}
b {1} {1} {1}

◦3 1 a b
1 {1} {a} {b}
a {1} {1} {1, a, b}
b {1} {1, b} {1, b}

◦4 1 a b
1 {1} {a} {b}
a {1} {1} {1, a, b}
b {1} {1, b} {1}

◦5 1 a b
1 {1} {a} {b}
a {1, b} {1} {1, a, b}
b {1} {1} {1, b}

◦6 1 a b
1 {1} {a} {a, b}
a {1} {1} {1, a, b}
b {1} {1, b} {1}

Then they can be checked that (H, ◦1, 1) is a C-HV-BE-algebra, (H, ◦2, 1) is
a D-HV-BE-algebra, (H, ◦3, 1) is a T-HV-BE-algebra, (H, ◦4, 1) is a V-HV-

BE-algebra, (H, ◦5, 1) is an RD-HV-BE-algebra and (H, ◦6, 1) is a CD-HV-

BE-algebra.

Theorem 3.2. Let H be a D-HV-BE-algebra. Then

(i) there exists a ∈ 1 ◦ x such that 1 ∈ x ◦ a,
(ii) x ◦ 1 ∩ y ◦ (x ◦ y) ̸= ϕ,

(iii) x ◦ 1 ∩ 1 ◦ (x ◦ 1) ̸= ϕ.

Proof. (i) By Definition 3.1, {1} = 1 ◦ 1 = 1 ◦ (x ◦ x) and by (HVBE2), 1 ∈
x ◦ (1 ◦ x). Then there exists a ∈ 1 ◦ x such that 1 ∈ x ◦ a.

(ii) By (HVBE2), y◦(x◦y)∩x◦(y◦y) ̸= ϕ and by Definition 3.1, x◦(y◦y) = x◦1.
Then x ◦ 1 ∩ y ◦ (x ◦ y) ̸= ϕ.

(iii) By (HVBE2), 1◦(x◦1)∩x◦(1◦1) ̸= ϕ and by Definition 3.1, x◦(1◦1) = x◦1.
Then x ◦ 1 ∩ 1 ◦ (x ◦ 1) ̸= ϕ.

�

Theorem 3.3. Let H be a CD-HV-BE-algebra. Then

(i) 1 ∈ x ◦ (y ◦ x),
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(ii) z ∈ y ◦ x implies x ≤ z, for all x, y, z ∈ H.

Proof. (i) By Definition 3.1, y ◦ (x ◦ x) = y ◦ 1 = {1} and by (HVBE2), 1 ∈
x ◦ (y ◦ x).

(ii) By (i), 1 ∈ x ◦ z for some z ∈ y ◦ x, then x ≤ z.

�

4. BL-BE-algebras

Can we arrive to hyper BE-algebras (HV-BE-algebras) from BE-algebras based

on “Ends lemma”? In the following theorem, we are going to answer this question

by changing it.

Theorem 4.1. Let (X, ∗, 1) be a BE-algebra. Then the binary hyperoperation • :

X ×X → ℘∗(X) defined by

x • y = (x ∗ y]≤, for all x, y ∈ X,

is an HV-BE-algebra. Moreover, if the BE-algebra (X, ∗, 1) is commutative, then

the HV-BE-algebra (X, •, 1) is commutative.

Proof. Let x ∈ X. First, we show that (HVBE1) is valid. Since x•1 = (x∗1]≤ = {t ∈
X | t ≤ x ∗ 1}, then 1 ∈ x • 1 and so x ≤ 1. Also, we have x •x = (x ∗x]≤ = {t ∈ X |
t ≤ x ∗ x}, then 1 ∈ x • x and so x ≤ x. Then, we show that (HVBE2) is valid. We

have x• (y •z) = {x• t | t ∈ y •z} = {x• t | t ≤ y ∗z} = {t′ ∈ X | t′ ≤ x∗ t, t ≤ y ∗z}.
Then there exist x ∗ (y ∗ z) ∈ x • (y • z) and y ∗ (x ∗ z) ∈ y • (x • z). Since

x ∗ (y ∗ z) = y ∗ (x ∗ z), we have x • (y • z) ∩ y • (x • z) ̸= ϕ. Now we check that

(HVBE3) is valid. Since 1•x = (1∗x]≤ = {t ∈ X | t ≤ 1∗x}, then x ∈ 1•x. Finally
for checking (HVBE4), let 1 ≤ x. Since 1 ∈ 1 • x = (1 ∗ x]≤ = {t ∈ X | t ≤ x}, we
have 1 ≤ x and so 1 ∗ x = 1. On the other hand, 1 ∗ x = x. Therefore x = 1.

Suppose that (x ∗ y) ∗ y = (y ∗ x) ∗ x. Then (x • y) • y = {t • y | t ≤ x ∗ y} =

{t′ ∈ X | t′ ≤ t ∗ y, t ≤ x ∗ y}. Therefore, (x ∗ y) ∗ y ∈ (x • y) • y and similarly

(y ∗ x) ∗ x ∈ (y • x) • x. Since the BE-algebra (X, ∗, 1) is commutative, we have

(x • y) • y ∩ (y • x) • x ̸= ϕ and the HV-BE-algebra (H, •, 1) constructed in this way

is commutative. �

The HV-BE-algebra (X, •, 1) constructed in this way, we call the associated HV-

BE-algebra to the BE-algebra (X, ∗, 1) or “Begins lemma” based on HV-BE-algebras,

or BL-BE-algebras for short.
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Example 10. Let X = {1, a} be a set with the following table:

∗ 1 a
1 1 a
a 1 1

Then it is easy to see that (X, ∗, 1) is a BE-algebra and (X, •, 1) is a BL-BE-algebra

with the following:

• 1 a
1 X {a}
a X X

Example 11. Let X := {1, a, b, c, d, 0} be a set with the following table:

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then (X, ∗, 1) is a BE-algebra [20]. We can check that (X, •, 1) is a commutative

BL-BE-algebra with the following table:

• 1 a b c d 0
1 X {a, b, d, 0} {b, 0} {c, d, 0} {d, 0} {0}
a X X {a, b, d, 0} {c, d, 0} {c, d, 0} {d, 0}
b X X X {c, d, 0} {c, d, 0} {c, d, 0}
c X {a, b, d, 0} {b, 0} X {a, b, d, 0} {b, 0}
d X X {a, b, d, 0} X X {a, b, d, 0}
0 X X X X X X

Theorem 4.2. Let (X, •, 1) be a BL-BE-algebra. Then for any x, y ∈ X and for all

nonempty subsets A and B of X the following statements holds:

(i) x • (y • y) = X,

(ii) x • (x • x) = X,

(iii) A • (B •B) = X,

(iv) A • (A •A) = X,

(v) A •A = X,

(vi) x • (x • 1) = X.
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Proof. It is straightforward. �

Theorem 4.3. Let (X1, •1, 11) and (X2, •2, 12) be BL-BE-algebras and X = X1 ×
X2. We define a hyperoperation “•” on X as follows,

(x1, y1) • (x2, y2) = (x1 •1 x2, y1 •2 y2)

for all (x1, y1), (x2, y2) ∈ H, where for A ⊆ X1 and B ⊆ X2 by (A,B) we mean

(A,B) = {(a, b) | a ∈ A, b ∈ B}, 1 = (11, 12). Then (X, •, 1) is a BL-BE-algebra,

and it is called the BL-BE-product of X1 and X2.

Proof. It is similar to the proof of Theorem 2.4. �

Example 12. Let X1 = {1, a, b} and X2 = {1, c, d} be two sets and (X1, •1, 1) and
(X2, •2, 1) be two BL-BE-algebras as follows:

•1 1 a b
1 X1 {a, b} {b}
a X1 X1 {a, b}
b X1 X1 X1

•2 1 c d
1 X2 {c, d} {d}
c X2 X2 {c, d}
d X2 X2 X2

It can be verified that (X1 ×X2, •, (1, 1)) is a BL-BE-algebra by Theorem 4.1.

Theorem 4.4. Let (X1, •1, 1) and (X2, •2, 1) be BL-BE-algebras such that X1∩X2 =

{1} and X = X1 ∪X2. Then (X, •, 1) is a BL-BE-algebra, where the hyperoperation

“•” on H is defined as follows:

x • y :=

 x •1 y if x, y ∈ X1,
x •2 y if x, y ∈ X2,
X otherwise,

for all x, y ∈ X.

Proof. It is similar to the proof of Theorem 2.5. �

We use the notation X1 ⊕X2 for the union of two BL-BE-algebras X1 and X2.

Example 13. Consider two BL-BE-algebras (X1, •1, 1) and (X2, •2, 1) in Example

12. By Theorem 2.5, it can be verified that (X, •, 1) with the following table is a

BL-BE-algebra.

• 1 a b c d
1 X1 {a, b} {b} {c, d} {d}
a X1 X1 {a, b} X X
b X1 X1 X1 X X
c X2 X X X2 {c, d}
d X2 X X X2 X2
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Now, we give the concept of a principal beginning generated by an element, which

lies in the subset in H:= X.

Suppose an HV-BE-algebra (H, •, 1) associated to the BE-algebra (H, ∗, 1) and

a nonempty subset G of H. For an arbitrary element g ∈ G, we may write

(g]≤G = {x ∈ G | x ≤ g}

as well as

(g]≤H = {x ∈ H | x ≤ g}.

Given this notation we may distinguish between (G, •G, 1) based on the hyperoper-

ation •G such that for an arbitrary pair of elements a, b ∈ G we set

a •G b = (a ∗ b]≤G = {x ∈ G | x ≤ a ∗ b}

and (G, •H , 1), where a •H b is defined by

a •H b = (a ∗ b]≤H = {x ∈ H | x ≤ a ∗ b}.

Obviously, properties of (G, •G, 1) and (G, •H , 1) will not be the same.

Theorem 4.5. Let (H, •, 1) be the associated HV-BE-algebra to the BE-algebra

(H, ∗, 1) and (G, ∗, 1) its BE-subalgebra of H. Then

(i) x ∈ y •H G, for all x, y ∈ H,

(ii) x ∈ y •G G, for all x, y ∈ G.

Proof. (i) Let x, y ∈ H. Then y•HG =
∪
g∈G

y•H g = y•H 1∪... = (y∗1]≤H ∪... =

(1]≤H ∪ ... = {t ∈ H | t ∗ 1 = 1} ∪ ... = H ∪ ... = H and so x ∈ y •H G.

(ii) Let x, y ∈ G. Then y •G G =
∪
g∈G

y •G g = y •G 1 ∪ ... = G and so y ∈ G.

�

Remark 2. In general, in every BL-BE-algebra, Theorem 4.5 is valid. For see, in

Example 13, a ∈ c •X X in the union of two BL-BE-algebras X1 and X2 i.e., X.

Theorem 4.6. Let (H, •, 1) be the associated HV-BE-algebra of a BE-algebra (H, ∗, 1).
If (G, ∗, 1) is a subalgebra of a BE-algebra (H, ∗, 1), then (G, •G, 1) is an HV-BE-

algebra.

Proof. Let x ∈ G. Since x •G 1 = (x ∗ 1]≤G = {t ∈ G | t ≤ 1}, then 1 ∈ x •G 1 and

so x ≤ 1. we have x •G x = (x ∗ x]≤G = {t ∈ G | t ≤ 1}, then 1 ∈ x •G x and so

x ≤ x. Also, there exist x ∗ (y ∗ z) ∈ x •G (y •G z), y ∗ (x ∗ z) ∈ y •G (x •G z) and
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x ∗ (y ∗ z) = y ∗ (x ∗ z), then x •G (y •G z) ∩ y •G (x •G z) ̸= ϕ. Moreover, since

1 •G x = (1 ∗ x]≤G = {t ∈ G | t ≤ x}, then x ∈ 1 •G x. Finally, let 1 ≤ x. Since

1 ∈ 1 •G x = (1 ∗ x]≤G = {t ∈ G | t ≤ x}, we have 1 ≤ x and so 1 ∗ x = 1. On the

other hand 1 ∗ x = x. Therefore x = 1. �

Remark 3. In Theorem 4.6, (G, •H , 1) is not an HV-BE-algebra. Since G is not

closed with respect to the hyperoperation •H .

Example 14. Let H = {1, a, b} and define the operation “∗” on H by the following

table:

∗ 1 a b
1 1 a b
a 1 1 b
b 1 a 1

It can be easily verified that (H, ∗, 1) is a BE-algebra. Further define the hyperop-

eration in the usually “Begins lemma” way, i.e. for an arbitrary pair x, y ∈ H define

x • y = (x ∗ y]≤. Then (H, •, 1) is an HV-BE-algebra with the following table:

• 1 a b
1 H {a} {b}
a H H {b}
b H {a} H

G = {1, a} is a BE-subalgebra of a BE-algebra (H, ∗, 1) and by Theorem 4.6,

(G, •G, 1) is an HV-BE-algebra. But, (G, •H , 1) is not an HV-BE-algebra.
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