ON SOME SCHUR, ALGEBRAS

EUNMI CHOI AND HEISOOK LEE

ABSTRACT. A Schur algebra was generalized to projective Schur algebra by admitting twisted group algebra. A Schur algebra is a projective Schur algebra with trivial 2-cocycle. In this paper we study situations that Schur algebra is a projective Schur algebra with nontrivial cocycle, and we find a criterion for a projective Schur algebra to be a Schur algebra.

1. Introduction

Let R be a commutative ring and B(R) be the Brauer group of equivalence classes of Azumaya R-algebras A. If an Azumaya algebra A is the homomorphic image of a group ring RG for some finite group G then A is called a Schur algebra. Equivalence classes of Schur algebras form a Schur subgroup S(R) of B(R). An Azumaya algebra is called a projective Schur algebra if it is an image of a twisted group ring $R^{\alpha}G$ with a finite group G and a 2-cocycle $\alpha \in Z^2(G, U(R))$, where U(R) is the set of units of R. The classes of similar algebras form a group under tensor product, called projective Schur group PS(R) (refer to [1], [3], [8] and [9]).

The purpose of the paper is to study relationships between Schur and projective Schur algebras. Every Schur algebra is a projective Schur algebra by taking a trivial 2-cocycle. Besides the trivial case, we study situations that a Schur algebra can be a projective Schur algebra with nontrivial 2-cocycle. We prove that if a Schur algebra A is an image of RG and if G has a nontrivial center then A is a projective Schur algebra represented by a twisted group ring with nontrivial cocycle. Conversely, if a projective Schur algebra A is represented by $R^{\alpha}G$ and if α is of

Received January 28, 2000. Revised March 23, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 16H05, 16P99, 20.

Key words and phrases: group representation, character, Schur and projective Schur algebra.

This work was supported by grant No. 97-0701-02-01-5 from the Basic Research Program of the Korea Science & Engineering Foundation.

finite order then A is a Schur algebra. We give some examples for the situation. On the other hand, in Section 4 we study projective character in order to express projective Schur algebra as a simple component of a twisted group algebra, and have a finer result.

Throughout the paper, G is a finite group, Q the field of rational numbers, Z the ring of integers and U(R) is the set of units in a commutative ring R.

2. Schur and projective Schur algebras

Let $K = Q(\sqrt{2})$ and let D be the quaternion K-algebra $(-1, -1)/K = K \oplus Ki \oplus Kj \oplus Kij$ with $i^2 = j^2 = -1$ and ij = -ji. Then D is a central simple K-algebra of order 2 in B(K) and is a homomorphic image of KQ_8 where Q_8 is the quaternion group of order 8, thus D is a Schur algebra.

Write $Q_8 = \langle x, y | x^4 = 1, x^2 = y^2, yx = x^{-1}y \rangle$, and consider a sequence

$$1 \to \langle -1 \rangle \cong \langle x^2 \rangle \to Q_8 \xrightarrow{\pi} Q_8 / \langle x^2 \rangle \to 1.$$

The $Q_8/\langle x^2\rangle=V_4$ is generated by \bar{x} and \bar{y} (\bar{x} means the modulus of x by $\langle x^2\rangle$), and the sequence yields a factor set f such that $f(\bar{y},\bar{x})=-1$ and all the other values are 1. The twisted group algebra K^fV_4 with basis $\{u_g|g\in V_4\}$ such that $u_{g_1}u_{g_2}=f(g_1,g_2)u_{g_1g_2}$ represents D under the map $P:K^fV_4\to D$ defined by $u_{\bar{x}}\mapsto i,\quad u_{\bar{y}}\mapsto j$ and $u_{\bar{x}\bar{y}}\mapsto ij$. Thus D is a projective Schur algebra with respect to nontrivial f. This example motivates the next theorem.

THEOREM 1. Let A be a Schur R-algebra which is a homomorphic image of RG with finite group G. Suppose that the center $Z(G) \neq 1$. Then there is a finite group H and a 2-cocycle $\alpha \in Z^2(H, U(R))$ which is not necessarily trivial such that A is a homomorphic image of $R^{\alpha}H$.

Proof. Let $\psi: RG \to A$ be the surjective homomorphism. Since Z(G) is not trivial, by considering a central group extension $1 \to Z(G) \to G \to G/Z(G) \to 1$, we have a nontrivial factor set $f \in Z^2(G/Z(G), Z(G))$ satisfying

$$f(\bar{s},\bar{t})st = s \cdot t \text{ for } \bar{s}, \ \bar{t} \in G/Z(G),$$

where $s \cdot t$ is a product of s and t in G and st is an element mapped on $\bar{s} \cdot \bar{t}$. Regarding f as an element in $Z^2(G/Z(G), U(RZ(G)))$, it was proved in [9] that

$$RZ(G)^f(G/Z(G)) \cong RG, \ \sigma \ w_{\bar{s}} \mapsto \sigma s$$

for $\sigma \in Z(G)$, $s \in G$, $\bar{s} \in G/Z(G)$ and $w_{\bar{s}}$ is a basis for $RZ(G)^f(G/Z(G))$. Thus we use the same notation ψ for the surjection $\psi : RZ(G)^f(G/Z(G)) \to A$.

It is obvious that for any $\sigma \in Z(G)$, $\psi(\sigma)$ is central in A, hence is contained in U(R). Therefore $\psi(f(\bar{s},\bar{t})) \in U(R)$ for any \bar{s} , $\bar{t} \in G/Z(G)$. If we define

$$\alpha: G/Z(G) \times G/Z(G) \to U(R)$$
 by $\alpha(\bar{s}, \bar{t}) = \psi(f(\bar{s}, \bar{t}))$

then it is routine to check that α is a 2-cocycle in $Z^2(G/Z(G), U(R))$. Thus we have a twisted group algebra $R^{\alpha}(G/Z(G))$ and there is a surjection from $R^{\alpha}(G/Z(G))$ to A defined by $w_{\bar{s}} \mapsto \psi(s)$. This completes the proof.

We now ask the converse question that when projective Schur algebras can be Schur algebras. For the purpose, we add a simple lemma.

LEMMA 2. Let k be a field of any characteristic p and α be a 2-cocycle in $Z^2(G, k^*)$ of finite order n. Then k contains a primitive n-th root of unity ε_n .

Proof. If characteristic of k is p > 0, p can not divide n because k contains no primitive p-th roots of unity. For any $g, x \in G$, $\alpha(g, x)^n = 1$ thus $\alpha(g, x)$ can be written as $\alpha(g, x) = \varepsilon_n^l$ for some l > 0 and $\langle \alpha(g, x) | g, x \in G \rangle \subseteq \langle \varepsilon_n \rangle$. If we suppose that $|\langle \alpha(g, x) | g, x \in G \rangle| = n_1 < n$, then $\alpha(g, x)^{n_1} = 1$ for all $g, x \in G$, contrary to the minimality of n. Therefore, $n_1 = n$ thus it follows that ε_n belongs to k^* .

THEOREM 3. Let A be a projective Schur algebra which is a homomorphic image of a twisted group algebra $k^{\alpha}G$ where G is a finite group and $\alpha \in Z^2(G, k^*)$. If the order of α is finite then A is a Schur algebra over k.

Proof. Let $\{a_g | g \in G\}$ with $a_1 = 1$ be the k-basis for $k^{\alpha}G$ such that $a_g a_x = \alpha(g, x) a_{gx}$ for all $g, x \in G$. Let the order of α be $n < \infty$.

Consider the α -covering group $G(\alpha)$ of G which is generated by $\varepsilon_n^i a_g$ for all $g \in G$ and $i \in Z$ (refer to [2] or [10]). Then $|G(\alpha)| = n|G|$ and there is a surjection $\pi: G(\alpha) \to G$ defined by $\pi(\varepsilon_n^i a_g) = g$ for all $g \in G$.

Let $T = \langle \varepsilon_n^i a_1 | i \in Z \rangle$. Then |T| = n and T is a subgroup of the center of $G(\alpha)$, thus we have a central cyclic group extension of T by G

$$1 \to T \to G(\alpha) \to G \to 1.$$

Let $f \in Z^2(G,T)$ be the factor set corresponding to the above sequence. Since $\varepsilon_n \in k^*$ by Lemma 2, T is a subset of k^* , hence f is contained in $Z^2(G, k^*)$ such that o(f)|n. If we consider the generalized f-covering group $G_n(f)$ ([2, Section 2]), then it follows from [2, Theorem 6 and Corollary 3] that $G(\alpha) \cong G_n(f)$ and α can be regarded as a factor set arose from the sequence.

For a homomorphism $\chi \in \operatorname{Hom}(T, k^*)$ defined by $\chi(\varepsilon_n^i a_1) = \varepsilon_n^i$, let I be the augmentation ideal of kT which is the kernel of homomorphism $kT \to k$ induced from χ . Then $kG(\alpha)/(kG(\alpha) \cdot I)$ is isomorphic to $k^{\alpha}G$. Thus by taking composition of surjections $kG(\alpha) \to k^{\alpha}G$ and $k^{\alpha}G \to A$, it follows that A is a homomorphic image of the group algebra $kG(\alpha)$ of finite group $G(\alpha)$, which implies that A is a Schur algebra. \square

3. Examples of Schur algebras

PROPOSITION 4. Consider the following central simple algebras.

(1) Let
$$R = Z(\sqrt{2})$$
. Let $A = R \oplus Ra \oplus Rb \oplus Rab$ with $a = (1+i)/\sqrt{2}$, $b = (1+j)/\sqrt{2}$ and $i^2 = j^2 = -1$, $ij = -ji$.

(2) Let
$$R = Z(\frac{1+\sqrt{5}}{2})$$
. Let $B = R \oplus Ra \oplus Rj \oplus Rb$ with

$$a = \frac{-1 + \sqrt{5} + 2i + (1 + \sqrt{5})j}{4},$$

$$b = \frac{-1 - \sqrt{5} + (-1 + \sqrt{5})j + 2ij}{4}$$

and i, j are as above.

Then A and B are projective Schur algebras represented by nontrivial cocycles.

Proof. The algebra A is an Azumaya algebra which is nontrivial in B(R) ([4, p.148]). Let H be a group generated by a and b. It was erroneously claimed in [5] that $a^8 = b^8 = 1$, $ab = b^4a$ and A is a homomorphic image of RH with |H| = 64. However, $ab \neq b^4a$. Moreover $a^4 = b^4 = -1$ and $a^2 = i$, $b^2 = j$ and by tedious calculations we have

$$H = \{\pm 1, \ \pm i, \ \pm j, \ \pm ij, \ \frac{(\pm 1 \pm i \pm j \pm ij)}{2}, \ \frac{(\pm 1 \pm i)}{\sqrt{2}}, \\ \frac{(\pm 1 \pm j)}{\sqrt{2}}, \frac{(\pm 1 \pm ij)}{\sqrt{2}}, \frac{(\pm i \pm j)}{\sqrt{2}}, \frac{(\pm i \pm ij)}{\sqrt{2}}, \frac{(\pm j \pm ij)}{\sqrt{2}}\}$$

so that the order of H is 48. Let

$$u = (-1 + i + j + ij)/2$$
, $v = (1 - i)/\sqrt{2}$, $x = i$ and $y = j$.

Then we have relations that $x^2=y^2=(xy)^2$, $x^4=u^3=1$, $y^u=xy$, $v^y=v^{-1}$, $u^v=u^{-1}xy^{-1}$, $v^2=x^{-1}$ and $x^u=y$. Thus H equals $\langle u,v\rangle$ with the defining relations o(u)=3 and o(v)=8, hence $H\cong E_{48}$ ([6, p.389]). Define

$$\psi: RH \to A \text{ by } \psi(v) = (1-i)/\sqrt{2}, \ \psi(u) = (-1+i+j+ij)/2.$$

Then ψ is a homomorphism and $\psi(v^{-1}) = a$, $\psi(v^2uv) = b$. This shows that A is a Schur algebra determined by the group algebra RH.

Since the center of H equals $\langle v^4 \rangle \cong \langle -1 \rangle$, we have a central extension

$$1 \to \langle -1 \rangle \cong \langle v^4 \rangle \to H \xrightarrow{\pi} H/\langle v^4 \rangle \to 1$$
,

where $H/\langle v^4 \rangle$ is of order 24 generated by \bar{u} , \bar{v} with $\bar{u}^3 = \bar{v}^4 = (\bar{v}\bar{u})^2 = 1$. Then $H/\langle v^4 \rangle$ is isomorphic to the symmetric group S_4 by considering $\bar{u} \leftrightarrow (1,2,3)$ and $\bar{v} \leftrightarrow (1,3,2,4)$.

Moreover the sequence yields a factor set β of order 2, for $vu(v^5u)^{-1} \in \text{Ker}\pi$, $v^5u = \beta(\bar{v}, \bar{u})vu$, hence $\beta(\bar{v}, \bar{u}) \in \text{Ker}\pi \cong \langle -1 \rangle$. Therefore $R^{\beta}S_4$ having basis $\{d_g | g \in S_4\}$ represents A with relations $d_{\bar{v}} \mapsto a$, $d_{\bar{u}} \mapsto b$, thus A is a projective Schur algebra with respect to $\beta \neq 1$. This proves (1).

For the algebra B in (2), it is an Azumaya algebra due to [8], and by some straightforward computations we have the following relations:

$$b = aj = \omega ja$$
, where $\omega = (2 + (-1 + \sqrt{5})i + (-1 - \sqrt{5})ij)/4$; $ab = \zeta ba$, where $\zeta = (1 - i + j + ij)/2$; $a^5 = b^5 = 1$; $\omega^3 = \zeta^3 = -1$; $(a\omega)^2 = (a\zeta)^2 = -1$; $(a\omega^2)^5 = (a\zeta^2)^5 = -1$.

Now let $P = a\zeta$ and $W = \zeta$. Then $P^2 = W^3 = (PW)^5 = -1$. Moreover if $S = \zeta^2$ and T = a then it follows that $TS^{-1} = a\zeta^4 = -a\zeta$, $S^3 = T^5 = 1$ and $(TS^{-1})^2 = -1$.

Let G be a group generated by P and W. Then G is also generated by -1, S and T, thus |G| = 120 ([11, p.176]). If we define a map ψ

$$\psi:\ RG \to B \quad \text{by} \ P \mapsto a\zeta \ \text{ and } W \mapsto \zeta$$

then it is a surjection, because $\psi(S) = \zeta^2$, $\psi(T) = \psi(PW^{-1}) = a$ and $\psi(T^4S) = a^4\zeta^2 = i$, hence this shows that B is a Schur R-algebra.

Following Theorem 1, we consider a central group extension

$$1 \to \langle -1 \rangle \cong \langle W^3 \rangle \to G \xrightarrow{\pi} G/\langle W^3 \rangle \to 1.$$

Then $G/\langle W^3 \rangle$ is a group of order 60 and is isomorphic to the alternating group A_5 (refer to [1]). Thus with $\alpha \in Z^2(G/\langle W^3 \rangle, \langle -1 \rangle)$ which corresponds to the above sequence, B can be represented by a twisted

group ring $R^{\alpha}(G/\langle W^3 \rangle)$, so that B is a projective Schur R-algebra. This completes the proposition.

An algebra is called a generalized Clifford R-algebra of rank m [9, Section 3] if there exist m generators u_1, \dots, u_m such that $u_i^n = a_i \in U(R)$ for $u_iu_j = \omega u_ju_i$ for all $1 \leq i, j \leq m$ and for a fixed n-th root of unity ω . In case of m = n = 2, this is only the generalized quaternion algebra $(a,b)/R = R \oplus Ri \oplus Rj \oplus Rij$ with relations $i^2 = a$, $j^2 = b$ and ij = -ji for $a, b \in U(R)$, which is a known example of projective Schur algebra. We recall the following lemma.

LEMMA 5 ([9]). Under the same notations above, a generalized Clifford R-algebra Γ of rank m is isomorphic to a twisted group ring R^cG for a 2-cocycle c determined by a_1, \dots, a_m .

Indeed if u_1, \ldots, u_m are m-generators of Γ , let $G = Z_n^m = Z_n \times \cdots \times Z_n$ (m-times) and let $\{x_1, \cdots, x_m\}$ be generators of $Z_n^m = G$. Then by defining $c: G \times G \to U(R)$ as below, it follows that R^cG is isomorphic to Γ :

$$\begin{split} c(x_i^s, x_j^t) &= \omega^{st} & \text{if } i < j \; ; & c(x_i^s, x_j^t) = 1 & \text{if } i > j \\ c(x_i^s, x_i^t) &= a_i & \text{if } i = j, \; s + t \ge n \; ; \; c(x_i^s, x_i^t) = 1 & \text{if } i = j, \; s + t < n. \end{split}$$

Furthermore if R contains n as a unit then R^cG is an Azumaya algebra thus $R^cG \cong \Gamma$ implies that Γ is a projective Schur algebra.

EXAMPLE. Due to Lemma 5, the quaternion algebra D in Section 2 and the algebra A in Proposition 4 are projective Schur algebras with nontrivial cocycles whose orders are finite, thus they are also Schur algebras.

In fact for D=(-1,-1)/K, consider $G=Z_2\times Z_2$ with generators $\{x_1,x_2\}$, and 2-cocycle $c:G\times G\to U(K)$ defined by $c(x_1,x_2)=-1$, $c(x_2,x_1)=1$, $c(x_1,x_1)=-1$ and $c(x_2,x_2)=-1$. Then D is an image of K^cG by Lemma 5.

Similarly, A has generators a, b satisfying $a^4 = b^4 = -1$ and $ab = \omega ba$ where $\omega^6 = 1$, indeed $\omega = (1 + i - j + ij)/2$. Let $G = Z_{12} \times Z_{12}$ and $d: G \times G \to U(R)$ be a cocycle defined in the way of Lemma 5. Then $A \cong R^dG$.

Moreover, since the cocycles c and d are of finite order, Theorem 3 shows that the algebras are Schur algebras.

REMARK. Theorem 3 shows that the order of 2-cocycle α plays an important role to determine whether a projective Schur algebra with respect to α is a Schur algebra. For the converse of the theorem, we ask that if A is a projective Schur algebra represented by $R^{\alpha}G$ and if A itself is a Schur algebra, then the order of α is finite. But this is not necessarily true as in the following example.

A generalized quaternion algebra $A=(\sqrt{2},\sqrt{2})/Q(\sqrt{2})$ is a projective Schur algebra due to Lemma 5, and moreover A is a Schur algebra since A is isomorphic to a matrix algebra $M_{2\times 2}(Q(\sqrt{2}))$. However the 2-cocycle c defined in Lemma 5 which represents A is not of finite order.

Thus it would be interesting to show that if A is a projective Schur algebra represented by $R^{\alpha}G$ and if A is a Schur algebra, then there is a 2-cocycle $\beta \in Z^2(G, U(R))$ whose order is finite.

4. Schur algebras and group character

We discussed (projective) Schur algebras as homomorphic images of certain (twisted) group algebras. However, as a simple component of kG, a Schur k-algebra A can be expressed precisely as A = kGe with a block idempotent e of kG. The block idempotent is uniquely determined by the group character χ of G which is afforded by A.

Let ρ be a projective α -representation of G over k and χ_{α} be an irreducible α -character afforded by ρ . In case that k is a splitting field for $k^{\alpha}G$, the block idempotent $e(\chi_{\alpha})$ of $k^{\alpha}G$ corresponding to χ_{α} forms

$$e(\chi_{\alpha}) = \frac{\chi_{\alpha}(1)}{|G|} \sum_{g \in G} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}(g^{-1}) a_g$$

where $\{a_g|g\in G\}$ is a k-basis of $k^{\alpha}G$ ([7, 1.11.1]).

Generally, for nonsplitting field k we have the following theorem.

THEOREM 6. Let $\alpha \in Z^2(G, k^*)$. Let E be an extension of k which is a splitting field for $E^{\alpha}G$ and U be a simple $E^{\alpha}G$ -module. Let ρ be an irreducible α -representation afforded by U and χ_{α} be the α -character corresponding to ρ . Then for the block idempotent $e(\chi_{\alpha})$ of $E^{\alpha}G$ and for $\mathcal{G} = \operatorname{Gal}(k(\chi_{\alpha})/k)$,

$$v(\chi_{\alpha}) = \sum_{\tau \in \mathcal{G}} e(\chi_{\alpha}^{\tau}) \quad \text{with} \quad \chi_{\alpha}^{\tau}(g) = \tau(\chi_{\alpha}(g))$$

is a block idempotent of $k^{\alpha}G$, where $k(\chi_{\alpha})$ is the field obtained by adjoining to k the values $\chi_{\alpha}(g)$ for $g \in G$. Moreover, $k^{\alpha}Gv(\chi_{\alpha}) \cong \rho(k^{\alpha}G)$ and the center $Z(\rho(k^{\alpha}G)) \cong k(\chi_{\alpha})$.

Proof. For any $\tau \in \mathcal{G}$ and for $x = \sum_{g \in G} x_g a_g \in k(\chi_\alpha)^\alpha G$, where $x_g \in k(\chi_\alpha)$, if we define $\tau \cdot x$ by $\sum \tau(x_g) a_g$ then it is clear that \mathcal{G} acts on $k(\chi_\alpha)^\alpha G$, thus χ_α^τ is also an α -character of G. Now since

$$\tau(e(\chi_{\alpha})) = \tau(\frac{\chi_{\alpha}(1)}{|G|} \sum_{\alpha} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}(g^{-1}) a_{g})$$
$$= \frac{\chi_{\alpha}(1)}{|G|} \sum_{\alpha} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}^{\tau}(g^{-1}) a_{g} = e(\chi_{\alpha}^{\tau}),$$

we get that

$$v(\chi_{\alpha}) = \sum_{\tau \in \mathcal{G}} e(\chi_{\alpha}^{\tau}) = \frac{\chi_{\alpha}(1)}{|G|} \sum_{g \in G} \alpha^{-1}(g, g^{-1}) \Big(\sum_{\tau \in \mathcal{G}} \chi_{\alpha}^{\tau}(g^{-1}) \Big) a_g.$$

Furthermore for any $\sigma \in \mathcal{G}$, since $\sigma(v(\chi_{\alpha})) = \sum_{\tau \in \mathcal{G}} \sigma e(\chi_{\alpha}^{\tau}) = \sum_{\tau \in \mathcal{G}} e(\chi_{\alpha}^{\sigma\tau}) = v(\chi_{\alpha})$ it follows that $v(\chi_{\alpha})$ is contained in $k^{\alpha}G$.

Now following similar arguments to [7, (14.1.14)], it is easy to see that $v(\chi_{\alpha})$ is a primitive central idempotent of $k^{\alpha}G$. For the rest of theorem, we may refer to [7, (7.3.8)].

Therefore Theorem 6 provides a description for projective Schur k-algebra as a simple component of twisted group algebra.

THEOREM 7. Let E be an algebraic closure of k. An algebra A is a projective Schur k-algebra if and only if there is a finite group G, a cocycle $\alpha \in Z^2(G, k^*)$ and an irreducible α -character χ_{α} of G over E such that $k = k(\chi_{\alpha})$ and $A \cong k^{\alpha}Ge(\chi_{\alpha})$ as k-algebras.

Proof. If A is a projective Schur algebra, i.e., if A is a simple component of $k^{\alpha}G$ which affords χ_{α} then A is central over k if and only if $k = Z(A) = Z(k^{\alpha}Gv(\chi_{\alpha})) = Z(\rho(kG^{\alpha})) = k(\chi_{\alpha})$ due to Theorem 6. Conversely if $A \cong k^{\alpha}Ge(\chi_{\alpha})$ then $k^{\alpha}G$ represents A and A is central since $k = k(\chi_{\alpha})$. Thus A is a projective Schur algebra.

Theorem 7 generalizes the statement in [7, (14.2.4)] about Schur algebras. By making use of group character, we prove Theorem 3 in more concrete form.

THEOREM 8. Let A be a projective Schur algebra represented by $k^{\alpha}G$.

(1) If the order of $\alpha \in Z^2(G, k^*)$ is finite then A is a Schur algebra.

(2) Furthermore if A is a simple component $k^{\alpha}Ge$ with a block idempotent e of $k^{\alpha}G$ then A is a simple component of a group algebra with the same block idempotent e in the group algebra.

Proof. As before, let ρ be an irreducible α -representation of G corresponding to the simple $k^{\alpha}G$ -module A and χ_{α} be the irreducible α -character afforded by ρ . Let $\{a_g | g \in G\}$ denote a k-basis for $k^{\alpha}G$ and E be an algebraic extension of k which splits $E^{\alpha}G$. Theorem 7 implies that

$$k = k(\chi_{\alpha})$$
 and $A \cong k^{\alpha}Ge(\chi_{\alpha})$, $(e(\chi_{\alpha}))$: the block idempotent).

It is known that the values of χ_{α} are sums of δ_g [7, (1.2.6)], where $\delta_g \in E^*$ is an o(g)-th root of

$$(a_g)^{o(g)} = \prod_{i=1}^{o(g)-1} \alpha(g, g^{-1}) a_{g^{o(g)}} = \prod_{i=1}^{o(g)-1} \alpha(g, g^{-1}) \in k^*.$$

If $o(\alpha) = n$ is finite then $(a_g)^{o(g)n} = 1$ for all $g \in G$. Thus we may choose δ_g as a root of unity in E and the values of χ_α are sums of roots of unity. Therefore $k(\chi_\alpha) = k(\varepsilon)$ for a primitive root of unity ε in E^* .

We denote the α -covering group $G(\alpha) = \langle \varepsilon_n^i a_g | g \in G, 1 \leq i \leq n \rangle$ by H. Then |H| = n|G| and the map ξ on H defined by $\xi(\varepsilon_n^i a_g) = \varepsilon_n^i \rho(g)$ for $g \in G$, $i \in Z$ is an ordinary representation of H for

$$\xi(\varepsilon_n^i a_g \varepsilon_n^j a_x) = \varepsilon_n^{i+j} \alpha(g,x) \rho(gx) = \xi(\varepsilon_n^i a_g) \xi(\varepsilon_n^j a_x).$$

Let θ be the (ordinary) character of H afforded by ξ .

We claim that $k(\theta) = k(\chi_{\alpha}) = k$. Indeed since $\theta(\varepsilon_n^i a_g) = \operatorname{tr}(\xi(\varepsilon_n^i a_g)) = \varepsilon_n^i \operatorname{tr} \rho(g) = \varepsilon_n^i \chi_{\alpha}(g)$ and $\varepsilon_n \in k^*$ by Lemma 2, $\theta(\varepsilon_n^i a_g) \in k(\chi_{\alpha})$. Thus all the values of θ are contained in $k(\chi_{\alpha})$ and $k(\theta) \subseteq k(\chi_{\alpha}) = k$. It thus follows that $k(\theta) = k(\chi_{\alpha}) = k$.

Clearly, A is an EH-module and the block idempotent of EH which corresponds to the ordinary character θ forms

$$e(\theta) = \frac{\theta(1)}{|H|} \sum_{\varepsilon_n^i a_g \in H} \theta((\varepsilon_n^i a_g)^{-1}) \varepsilon_n^i a_g,$$

thus it belongs to $k(\theta)H = kH$.

Moreover we have that the idempotents $e(\theta)$ and $e(\chi_{\alpha})$ are same because

$$e(\theta) = \frac{\chi_{\alpha}(1)}{n|G|} \sum_{\varepsilon_n^i a_g \in H} \theta(\varepsilon_n^{-i} \alpha^{-1}(g, g^{-1}) a_{g^{-1}}) \varepsilon_n^i a_g$$

$$= \frac{\chi_{\alpha}(1)}{n|G|} \sum_{\varepsilon_n^i a_g \in H} \varepsilon_n^{-i} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}(g^{-1}) \varepsilon_n^i a_g$$

$$= \frac{\chi_{\alpha}(1)}{n|G|} n \sum_{g \in G} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}(g^{-1}) a_g = e(\chi_{\alpha}).$$

We now consider the central simple component $kHe(\theta)$ of kH corresponding to an irreducible character θ of H. Since there is a surjective homomorphism $kH \to k^{\alpha}G$ induced from a surjection $H \to G$, $\varepsilon_n^i a_g \mapsto g$ for all $g \in G$, we have a surjective map $kHe(\theta) = kHe(\chi_{\alpha}) \to k^{\alpha}Ge(\chi_{\alpha}) \cong A$. Moreover this is an isomorphism because $kHe(\theta)$ is simple, hence we have $A \cong kHe(\theta)$. This finishes the proof.

References

- [1] E. Aljadeff and J. Sonn, Projective Schur division algebras are abelian crossed products, J. Algebra 163 (1994), 795–805.
- [2] E. Choi, Projective representations, abelian F-groups, and central extensions, J. Algebra 160 (1993), 242–256.
- [3] E. Choi and H. Lee, Projective Schur algebras over a field of positive characteristic, Bull. Austral. Math. Soc. 58 (1998), 103–106.
- [4] F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, LNM 181, Springer-Verlag, 1971.
- [5] F. DeMeyer and R. Mollin, The Schur group of a commutative ring, J. Pure Appl. Algebra 35 (1985), 117-122.
- [6] B. Huppert and N. Blackburn, Finite groups III, Springer-Verlag, Berlin, 1982.
- [7] G. Karpilovsky, Group representations, Vol 3, Elsevier Science, North-Holland, London, 1994.
- [8] P. Nelis, Schur and projective Schur groups of number rings, Canad. J. Math. 43 (1991), no. 3, 540–558.
- [9] P. Nelis and F. VanOystaeyen, The projective Schur subgroup of the Brauer group are root groups of finite groups, J. Algebra 137 (1991), 501-518.
- [10] W. F. Reynolds, Noncommutators and the number of projective characters of finite group, Proc. Symp. Pure Math. 47 (1987), Part 2, 71-74.
- [11] M. Suzuki, Group theory, Springer-Verlag, Berlin, 1978.

Eunmi Choi Department of mathematics Han Nam University Taejon 306-791, Korea E-mail: emc@math.hannam.ac.kr

Heisook Lee Department of Mathematics Ewha Womans University Seoul 120-750, Korea E-mail: hsllee@mm.ewha.ac.kr