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ON SOME SCHUR ALGEBRAS

Eunmi CHo1 AND HEISOOK LEE

ABSTRACT. A Schur algebra was generalized to projective Schur
algebra by admitting twisted group algebra. A Schur algebra is a
projective Schur algebra with trivial 2-cocycle. In this paper we
study situations that Schur algebra is a projective Schur algebra
with nontrivial cocycle, and we find a criterion for a projective
Schur algebra to be a Schur algebra.

1. Introduction

Let R be a commutative ring and B(R) be the Brauer group of equiv-
alence classes of Azumaya R-algebras A. If an Azumaya algebra A is
the homomorphic image of a group ring RG for some finite group G
then A is called a Schur algebra. Equivalence classes of Schur algebras
form a Schur subgroup S(R) of B(R). An Azumaya algebra is called a
projective Schur algebra if it is an image of a twisted group ring R*G
with a finite group G and a 2-cocycle o € Z2(G,U(R)), where U(R) is
the set of units of R. The classes of similar algebras form a group under
tensor product, called projective Schur group PS(R) (refer to [1], [3],
(8] and [9]).

The purpose of the paper is to study relationships between Schur and
projective Schur algebras. Every Schur algebra is a projective Schur
algebra by taking a trivial 2-cocycle. Besides the trivial case, we study
situations that a Schur algebra can be a projective Schur algebra with
nontrivial 2-cocycle. We prove that if a Schur algebra A is an image of
RG and if G has a nontrivial center then A is a projective Schur algebra
represented by a twisted group ring with nontrivial cocycle. Conversely,
if a projective Schur algebra A is represented by R*G and if o is of
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finite order then A is a Schur algebra. We give some examples for the
situation. On the other hand, in Section 4 we study projective character
in order to express projective Schur algebra as a simple component of a
twisted group algebra, and have a finer result.

Throughout the paper, G is a finite group, @ the field of rational
numbers, Z the ring of integers and U(R) is the set of units in a com-
mutative ring R.

2. Schur and projective Schur algebras

Let K = Q(v/2) and let D be the quaternion K-algebra (—1,—1)/K =
KoKi®Kj®Kij with i2 = j2 = —1 and ij = —ji. Then D is a central
simple K-algebra of order 2 in B(K) and is a homomorphic image of
K Qg where Qg is the quaternion group of order 8, thus D is a Schur
algebra.

Write Qg = (z,ylz? = 1,22 = y2,yz = x~1y), and consider a se-
quence

1— (1) = (2*) - Qs = Qs/(z’) — 1.

The Qg/{x?) = V, is generated by # and § (T means the modulus of z
by (z2)), and the sequence yields a factor set f such that f(§,%) = —1
and all the other values are 1. The twisted group algebra KV, with
basis {ug| g € V4} such that ug ug, = f(g1,92)ug, 4, represents D under
the map P : KV, — D defined by uz — 1, ug — J and uzg — ij.
Thus D is a projective Schur algebra with respect to nontrivial f. This
example motivates the next theorem.

THEOREM 1. Let A be a Schur R-algebra which is a homomorphic
image of RG with finite group G. Suppose that the center Z(G) # 1.
Then there is a finite group H and a 2-cocycle o € Z*(H,U(R)) which
is not necessarily trivial such that A is a homomorphic image of R*H.

Proof. Let ¢ : RG — A be the surjective homomorphism. Since
Z (@) is not trivial, by considering a central group extension 1 — Z(G) —
G — G/Z(G) — 1, we have a nontrivial factor set f € Z%(G/Z(G), Z(G))
satisfying

f(5,t)st=s-t fors, teG/Z(G),

where s -1 is a product of s and t in G and st is an element mapped
on 3 -f. Regarding f as an element in Z2(G/Z(G),U(RZ(G))), it was
proved in [9] that

RZ(G)(G/Z(G)) = RG, ¢ ws— os
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foro € Z(G), s € G, 5§ € G/Z(G) and w; is a basis for RZ(G) (G/Z(G)).
Thus we use the same notation v for the surjection ¢ : RZ(G)f (G/Z(@))
— A.

It is obvious that for any o € Z(G), ¥(0) is central in A, hence is
contained in U(R). Therefore (f(5,%)) € U(R) for any §, t € G/Z(G).
If we define

a: G/Z(G)x G/Z(G) = U(R) by as,f) =¢(f(5,1))

then it is routine to check that « is a 2-cocycle in Z2(G/Z(G),U(R)).
Thus we have a twisted group algebra R*(G/Z(G)) and there is a sur-
jection from R*(G/Z(G)) to A defined by ws — (s). This completes
the proof. a

We now ask the converse question that when projective Schur algebras
can be Schur algebras. For the purpose, we add a simple lemma.

LEMMA 2. Let k be a field of any characteristic p and & be a 2-cocycle
in Z%(G,k*) of finite order n. Then k contains a primitive n-th root of
unity €,.

Proof. If characteristic of kis p > 0, p can not divide n because k con-
tains no primitive p-th roots of unity. For any g,z € G, a(g,z)"* = 1 thus
a(g,z) can be written as a(g, z) = &, for some I > 0 and {a{g, )| g,z €
G) C (en). If we suppose that |(a(g,z)| g,z € G)| = ny < n, then
a(g,z)™ =1 for all g,z € G, contrary to the minimality of n. There-
fore, n1 = n thus it follows that ¢, belongs to k*. O

THEOREM 3. Let A be a projective Schur algebra which is a homo-
morphic image of a twisted group algebra k*G where G is a finite group
and o € Z%(G,k*). If the order of « is finite then A is a Schur algebra
over k.

Proof. Let {ag| g € G} with a1 = 1 be the k-basis for k*G such that
agaz = a(g,T)ag, for all g,z € G. Let the order of o be n < 0.

Consider the a-covering group G(a) of G which is generated by £ a,
for all g € G and i € Z (refer to [2] or [10]). Then |G(a)| = n|G| and
there is a surjection 7 : G(a) — G defined by n(hag) = g forallg € G.

Let T = (¢%a1| i € Z). Then |T| = n and T is a subgroup of the
center of G(a), thus we have a central cyclic group extension of T' by G

1-T—Gla) > G- 1.

Let f € Z%(G,T) be the factor set corresponding to the above sequence.
Since g, € k* by Lemma 2, T is a subset of k*, hence f is contained
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in Z%(G, k*) such that o(f)|n. If we consider the generalized f-covering
group Gn(f) ([2, Section 2]), then it follows from [2, Theorem 6 and
Corollary 3] that G(a) = G,(f) and « can be regarded as a factor set
arose from the sequence.

For a homomorphism x € Hom(7T, k*) defined by x(eta1) = €&, let I
be the augmentation ideal of kT which is the kernel of homomorphism
kT — k induced from x. Then kG(a)/(kG(a)-I) is isomorphic to k®G.
Thus by taking composition of surjections kG(a) — k“G and kG — A,
it follows that A is a homomorphic image of the group algebra kG(«) of
finite group G(a), which implies that A is a Schur algebra. O

3. Examples of Schur algebras

PRrOPOSITION 4. Consider the following central simple algebras.
(1) Let R=Z(v/2). Let A= REBRaGBRb@Rab with a = (1+14)/v/2,
b=(1+3)/v2 and i? = j* = -1, ij = —ji.
(2) Let R = Z(*3). Let B= R® Ra® Rj ® Rb with

—14+vV5+2i+ (1 +VB)j
4 b

—1— V54 (=14 V5)j + 2ij
4

b=
and i,j are as above.
Then A and B are projective Schur algebras represented by nontrivial

cocycles.

Proof. The algebra A is an Azumaya algebra which is nontrivial
in B(R) ([4, p.148]). Let H be a group generated by a and b. It was
erroneously claimed in [5] that a® = b8 = 1, ab = b%a and A is a
homomorphic image of RH with |H| = 64. However, ab # ba. Moreover
a* =b* = —1 and a® = i, b®> = j and by tedious calculations we have
(Fl+itj+ij) (1%4)

2 b \/§ b
(£124) (E1+i) (Hid)) (Fitiy) @),
so that the order of H is 48. Let
u=(=14+i+j+15)/2, v=>01-49)/V2, z=1i and y=7j

= {1, =i, +j, +ij,
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Then we have relations that 22 = y? = (zy)?, z* = «® = 1, y* = zy,
wW=v"1 ¥ =uley !, v = 271 and 2* = y. Thus H equals (u,v)
with the defining relations o(u) = 3 and o(v) = 8, hence H = Ey3 ([6,
p.389)). Define

%: RH — A by p(v) = (1-1)/V2, $(u) = (=1 +i+j +1ij)/2.

Then 4 is a homomorphism and ¥(v~!) = a, 1¥(v?uv) = b. This shows
that A is a Schur algebra determined by the group algebra RH.

~

Since the center of H equals (v*) & (—1), we have a central extension
1= (-1) = (v*) = H 5 H/{v*) = 1,

where H/{v*) is of order 24 generated by @, ¥ with @3 = 9* = (v%)? = 1.
Then H/(v*) is isomorphic to the symmetric group S4 by considering
@ (1,2,3) and ¥ < (1,3,2,4).

Moreover the sequence yields a factor set 3 of order 2, for vu(vPu)™1 €
Kerr, v®u = B(7, @)vu, hence B(,a) € Kerm 2 (—1). Therefore R8S,
having basis {dy4| g € S4} represents A with relations dy — a, dg — b,
thus A is a projective Schur algebra with respect to 8 # 1. This proves

(1).

For the algebra B in (2), it is an Azumaya algebra due to [8], and by
some straightforward computations we have the following relations:

b=aj =wja, wherew = (2+ (=14 v5)i+ (-1 —5)ij)/4;

ab = ¢ba, where { = (1 —¢+j+15)/2;

d=0=1 B=C=-1 (aw)?=(a)?=-1;

(aw?)® = (aC?)® = 1.
Now let P =a( and W = ¢. Then P? = W3 = (PW)% = —1. Moreover
if S = ¢? and T = a then it follows that TS~ = a¢* = —a(, 3 =T% =
1 and (TS™1)?% = —1.

Let G be a group generated by P and W. Then G is also generated
by —1, S and T, thus |G| =120 ([11, p.176]). If we define a map

Yv: RG—- B by P—a( and W — (

then it is a surjection, because ¥(S) = (%, ¥(T) = Y(PW™!) = a and
Y(T4S) = a*¢? =4, hence this shows that B is a Schur R-algebra.
Following Theorem 1, we consider a central group extension

1-(-1)=2WwWl) -65 /(W) - 1.

Then G/{W3) is a group of order 60 and is isomorphic to the alternat-
ing group As (refer to [1]). Thus with o € Z%(G/(W?),(~1)) which
corresponds to the above sequence, B can be represented by a twisted
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group ring R%(G/(W3)), so that B is a projective Schur R-algebra. This
completes the proposition. |

An algebra is called a generalized Clifford R-algebra of rank m [9,
Section 3] if there exist m generators ui,--- ,u,, such that «' = q; €
U(R) for usu; = wu,u; for all 1 < 4,5 < m and for a fixed n-th root of
unity w. In case of m = n = 2, this is only the generalized quaternion
algebra (a,b)/R = R® Ri ® Rj ® Rij with relations i?> = a, 52 = b and
ij = —ji for a,b € U(R), which is a known example of projective Schur
algebra. We recall the following lemma.

LEMMA 5 ([9]). Under the same notations above, a generalized Clif-
ford R-algebra T' of rank m is isomorphic to a twisted group ring R°G
for a 2-cocycle ¢ determined by ai,- - , G-

Indeed if u1, ..., u,, are m-generators of I', let G = Z]' = Z, x---xZp
(m-times) and let {z1,--- ,z;,} be generators of Z™ = G. Then by
defining ¢ : G x G — U(R) as below, it follows that R°G is isomorphic
to I

o(zf,z;) =w ifi<j; c(ag,at) =1 if i > j
c(ef, @) =a; fi=j, s+t>n; c(zf,zl)=1 ifi=j, s+t<n

Furthermore if R contains n as a unit then R°G is an Azumaya algebra
thus R°G = I" implies that I is a projective Schur algebra.

ExAMPLE. Due to Lemma, 5, the quaternion algebra D in Section 2
and the algebra A in Proposition 4 are projective Schur algebras with
nontrivial cocycles whose orders are finite, thus they are also Schur al-
gebras.

In fact for D = (—1,-1)/K, consider G = Z3 x Z with generators
{z1,22}, and 2-cocycle ¢ : G x G — U(K) defined by c(z1,z2) = —1,

c(z2,z1) =1, ¢(z1,21) = —1 and ¢(x2,z2) = —1. Then D is an image
of K°G by Lemma 5.
Similarly, A has generators a, b satisfying a* = b* = —1 and ab = wha

where w® = 1, indeed w = (1414 — j +45)/2. Let G = Z13 x Zy5 and
d: G x G — U(R) be a cocycle defined in the way of Lemma 5. Then
A= RIG.

Moreover, since the cocycles ¢ and d are of finite order, Theorem 3
shows that the algebras are Schur algebras.
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REMARK. Theorem 3 shows that the order of 2-cocycle « plays an
important role to determine whether a projective Schur algebra with
respect to « is a Schur algebra. For the converse of the theorem, we
ask that if A is a projective Schur algebra represented by R*G and if
A itself is a Schur algebra, then the order of « is finite. But this is not
necessarily true as in the following example.

A generalized quaternion algebra A = (v/2, v2)/Q(v/2) is a projective
Schur algebra due to Lemma 5, and moreover A is a Schur algebra since
A is isomorphic to a matrix algebra May2(Q(v/2)). However the 2-
cocycle ¢ defined in Lemma 5 which represents A is not of finite order.

Thus it would be interesting to show that if A is a projective Schur
algebra represented by R*G and if A is a Schur algebra, then there is a
2-cocycle 3 € Z?(G,U(R)) whose order is finite.

4. Schur algebras and group character

We discussed (projective) Schur algebras as homomorphic images of
certain (twisted) group algebras. However, as a simple component of
kG, a Schur k-algebra A can be expressed precisely as A = kGe with a
block idempotent e of kG. The block idempotent is uniquely determined
by the group character x of G which is afforded by A.

Let p be a projective a-representation of G over k and x, be an
irreducible a-character afforded by p. In case that k is a splitting field
for k*G, the block idempotent e(x,) of k*G corresponding to x,, forms

Xall - _ _
e(xa) = %Za 19,97 )xalg™ g
geG
where {a,4lg € G} is a k-basis of k*G ([7, 1.11.1}).
Generally, for nonsplitting field & we have the following theorem.

THEOREM 6. Let a € Z%(G,k*). Let E be an extension of k which
is a splitting field for E“G and U be a simple E“G-module. Let p be
an irreducible a-representation afforded by U and x,, be the a-character

corresponding to p. Then for the block idempotent e(x,) of E*G and
for G = Gal(k(xa)/k),

v(Xa) = Y _e(xh) with x3(9) = 7(xa(9))

TEG
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is a block idempotent of k*G, where k(x,) is the field obtained by
adjoining to k the values xq(g) for g € G. Moreover, k®*Gu(xa) =
p(k®*G) and the center Z(p(k*G)) = k(xa)-

Proof. For any 7 € G and for z = 3 ;%405 € k(Xa)*G, Where
Ty € k(Xa), if we define 7.z by Y. 7(z4)ay then it is clear that G acts
on k(xq)*G, thus x7, is also an a—character of G. Now since

7(e(xa)) L9 Dxalg™ay)
- X,(f,,l Za (9,9~ )% (0™ g = 0D,
we get that
) = el = X4 Y o, (T xaa ™) )as
r€G geG TEG

Furthermore for any o € G, since 0(v(Xa))=D_ g 7e(X0)=2_,cg e(XA
= v(Xq) it follows that v(x,) is contained in k*G.

Now following similar arguments to [7, (14.1.14)], it is easy to see
that v(x.) is a primitive central idempotent of k*G. For the rest of
theorem, we may refer to 7, (7.3.8)]. 0

Therefore Theorem 6 provides a description for projective Schur k-
algebra as a simple component of twisted group algebra.

THEOREM 7. Let E be an algebraic closure of k. An algebra A is
a projective Schur k-algebra if and only if there is a finite group G, a
cocycle o € Z%(G,k*) and an irreducible a-character xo of G over E
such that k = k(xo) and A = k*Ge(xq) as k-algebras.

Proof. 1f A is a projective Schur algebra, i.e., if A is a simple com-
ponent of £*G which affords y, then A is central over k if and only if
k= 2Z(A) = Z(k*Gv(xa)) = Z(p(kG*)) = k(xa) due to Theorem 6.
Conversely if A = k“Ge(xo) then k*G represents A and A is central
since k = k(xq). Thus A is a projective Schur algebra. O

Theorem 7 generalizes the statement in [7, (14.2.4)] about Schur al-
gebras. By making use of group character, we prove Theorem 3 in more
concrete form.

THEOREM 8. Let A be a projective Schur algebra represented by
k*G.
(1) If the order of a € Z?(G, k*) is finite then A is a Schur algebra.
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(2) Furthermore if A is a simple component k“Ge with a block idem-
potent e of k*G then A is a simple component of a group algebra
with the same block idempotent e in the group algebra.

Proof. As before, let p be an irreducible a-representation of G cor-
responding to the simple k*G-module A and x, be the irreducible a-
character afforded by p. Let {ag| g € G} denote a k-basis for k*G and
E be an algebraic extension of k& which splits £F*G. Theorem 7 implies
that

k=k(xo) and A= k%Ge(xqs), (e(xo): the block idempotent).

It is known that the values of x, are sums of §, [7, (1.2.6)], where 6, € E*
is an o(g)-th root of

o(g)-1 o(g)-1

(ag)®) = H a(g, 97 )agewe = H a(g,g7!) €k

=1 i=1

If o(e) = n is finite then (a4)°@" = 1 for all g € G. Thus we may
choose 64 as a root of unity in E and the values of x, are sums of roots
of unity. Therefore k(xo) = k(¢) for a primitive root of unity ¢ in E*.

We denote the a-covering group G(a) = {ehaylg € G,1 < i < n) by
H. Then |H| = n|G| and the map & on H defined by £(e%,a,) = €,p(g)
for g € G, i € Z is an ordinary representation of H for

£(ehagelay) = et a(g, z)p(gz) = £(eha0)é (el az).

Let 6 be the (ordinary) character of H afforded by £.

We claim that k(0) = k(xo) = k. Indeed since 0(6 ag)=tr(&(kay))=
eitrp(g) = €hxa(g) and €, € k* by Lemma 2, 0(%a,) € k(xo). Thus
all the values of 6 are contained in k(xo) and k(0) C k(xo) = k. It thus
follows that k(8) = k(xa) = k.

Clearly, A is an EH-module and the block idempotent of EH which
corresponds to the ordinary character 8 forms

e(6) |H| Z 0((ehag) el ag,

ehag€H

thus it belongs to k(8)H = kH.
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Moreover we have that the idempotents e(6) and e(x,) are same
because

e(d) = n|G| Z 8(c,'a1(g, g 1)a —1)ebag

ehag€H

Xa(l _ 1\ i
= “G) > entaHg, 07 )Xalg ek ay
n| |MGH
q

- >5175|)n2a (9,9 M xalg ag = e(xa)-

We now consider the central simple component kHe(6) of kH cor-
responding to an irreducible character 8 of H. Since there is a sur-
jective homomorphism kH — k®G induced from a surjection H — G,
glag > g for all g € G, we have a surjective map kHe(0) = kHe(xo) —
k*Ge(xo) = A. Moreover this is an isomorphism because kHe(6) is
simple, hence we have A = kHe(6). This finishes the proof. a
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